Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Muncipinto is active.

Publication


Featured researches published by Giovanni Muncipinto.


Journal of Medicinal Chemistry | 2009

Discovery of a novel class of potent coumarin monoamine oxidase B inhibitors: development and biopharmacological profiling of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate (NW-1772) as a highly potent, selective, reversible, and orally active monoamine oxidase B inhibitor.

Leonardo Pisani; Giovanni Muncipinto; Teresa Fabiola Miscioscia; Orazio Nicolotti; Francesco Leonetti; Marco Catto; Carla Caccia; Patricia Salvati; Ramón Soto-Otero; Estefanía Méndez-Álvarez; Céline Le Bourdonnec Passeleu; Angelo Carotti

In an effort to discover novel selective monoamine oxidase (MAO) B inhibitors with favorable physicochemical and pharmacokinetic profiles, 7-[(m-halogeno)benzyloxy]coumarins bearing properly selected polar substituents at position 4 were designed, synthesized, and evaluated as MAO inhibitors. Several compounds with MAO-B inhibitory activity in the nanomolar range and excellent MAO-B selectivity (selectivity index SI > 400) were identified. Structure-affinity relationships and docking simulations provided valuable insights into the enzyme-inhibitor binding interactions at position 4, which has been poorly explored. Furthermore, computational and experimental studies led to the identification and biopharmacological characterization of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate 22b (NW-1772) as an in vitro and in vivo potent and selective MAO-B inhibitor, with rapid blood-brain barrier penetration, short-acting and reversible inhibitory activity, slight inhibition of selected cytochrome P450s, and low in vitro toxicity. On the basis of this preliminary preclinical profile, inhibitor 22b might be viewed as a promising clinical candidate for the treatment of neurodegenerative diseases.


Journal of Organic Chemistry | 2012

Synthesis and Profiling of a Diverse Collection of Azetidine-Based Scaffolds for the Development of CNS-Focused Lead-like Libraries

Jason T. Lowe; Maurice D. Lee; Lakshmi B. Akella; Emeline L. Davoine; Etienne J. Donckele; Landon Durak; Jeremy R. Duvall; Baudouin Gerard; Edward B. Holson; Adrien Joliton; Sarathy Kesavan; Bérénice C. Lemercier; Haibo Liu; Jean-Charles Marie; Carol Mulrooney; Giovanni Muncipinto; Morgan Welzel O’Shea; Laura M. Panko; Ann Rowley; Byung-Chul Suh; Méryl Thomas; Florence F. Wagner; Jingqiang Wei; Michael A. Foley; Lisa A. Marcaurelle

The synthesis and diversification of a densely functionalized azetidine ring system to gain access to a wide variety of fused, bridged, and spirocyclic ring systems is described. The in vitro physicochemical and pharmacokinetic properties of representative library members are measured in order to evaluate the use of these scaffolds for the generation of lead-like molecules to be used in targeting the central nervous system. The solid-phase synthesis of a 1976-membered library of spirocyclic azetidines is also described.


Journal of Medicinal Chemistry | 2014

Impact of stereospecific intramolecular hydrogen bonding on cell permeability and physicochemical properties.

Björn Over; Patrick McCarren; Per Artursson; Michael Foley; Fabrizio Giordanetto; Gunnar Grönberg; Constanze Hilgendorf; Maurice D. Lee; Pär Matsson; Giovanni Muncipinto; Mélanie Pellisson; Matthew Perry; Richard Svensson; Jeremy R. Duvall; Jan Kihlberg

Profiling of eight stereoisomeric T. cruzi growth inhibitors revealed vastly different in vitro properties such as solubility, lipophilicity, pKa, and cell permeability for two sets of four stereoisomers. Using computational chemistry and NMR spectroscopy, we identified the formation of an intramolecular NH→NR3 hydrogen bond in the set of stereoisomers displaying lower solubility, higher lipophilicity, and higher cell permeability. The intramolecular hydrogen bond resulted in a significant pKa difference that accounts for the other structure–property relationships. Application of this knowledge could be of particular value to maintain the delicate balance of size, solubility, and lipophilicity required for cell penetration and oral administration for chemical probes or therapeutics with properties at, or beyond, Lipinski’s rule of 5.


Angewandte Chemie | 2011

Catalytic Diastereoselective Petasis Reactions

Giovanni Muncipinto; Philip N. Moquist; Stuart L. Schreiber; Scott E. Schaus

Multicomponent Petasis reactions: the first diastereoselective Petasis reaction catalyzed by chiral biphenols that enables the synthesis of syn and anti β-amino alcohols in pure form has been developed. The reaction exploits a multicomponent approach that involves boronates, α-hydroxy aldehydes, and amines.


Journal of Medicinal Chemistry | 2015

Structure-Based Design and Optimization of Multitarget-Directed 2H-Chromen-2-one Derivatives as Potent Inhibitors of Monoamine Oxidase B and Cholinesterases

Roberta Farina; Leonardo Pisani; Marco Catto; Orazio Nicolotti; Domenico Gadaleta; Nunzio Denora; Ramón Soto-Otero; Estefanía Méndez-Álvarez; Carolina dos Santos Passos; Giovanni Muncipinto; Cosimo Altomare; Alessandra Nurisso; Pierre-Alain Carrupt; Angelo Carotti

The multifactorial nature of Alzheimers disease calls for the development of multitarget agents addressing key pathogenic processes. To this end, by following a docking-assisted hybridization strategy, a number of aminocoumarins were designed, prepared, and tested as monoamine oxidases (MAOs) and acetyl- and butyryl-cholinesterase (AChE and BChE) inhibitors. Highly flexible N-benzyl-N-alkyloxy coumarins 2-12 showed good inhibitory activities at MAO-B, AChE, and BChE but low selectivity. More rigid inhibitors, bearing meta- and para-xylyl linkers, displayed good inhibitory activities and high MAO-B selectivity. Compounds 21, 24, 37, and 39, the last two featuring an improved hydrophilic/lipophilic balance, exhibited excellent activity profiles with nanomolar inhibitory potency toward hMAO-B, high hMAO-B over hMAO-A selectivity and submicromolar potency at hAChE. Cell-based assays of BBB permeation, neurotoxicity, and neuroprotection supported the potential of compound 37 as a BBB-permeant neuroprotective agent against H2O2-induced oxidative stress with poor interaction as P-gp substrate and very low cytotoxicity.


Nature Chemical Biology | 2016

Structural and conformational determinants of macrocycle cell permeability

Björn Over; Pär Matsson; Christian Tyrchan; Per Artursson; Bradley C. Doak; Michael Foley; Constanze Hilgendorf; Stephen Johnston; Maurice D. Lee; Richard J. Lewis; Patrick McCarren; Giovanni Muncipinto; Ulf Norinder; Matthew Perry; Jeremy R. Duvall; Jan Kihlberg

Macrocycles are of increasing interest as chemical probes and drugs for intractable targets like protein-protein interactions, but the determinants of their cell permeability and oral absorption are poorly understood. To enable rational design of cell-permeable macrocycles, we generated an extensive data set under consistent experimental conditions for more than 200 non-peptidic, de novo-designed macrocycles from the Broad Institutes diversity-oriented screening collection. This revealed how specific functional groups, substituents and molecular properties impact cell permeability. Analysis of energy-minimized structures for stereo- and regioisomeric sets provided fundamental insight into how dynamic, intramolecular interactions in the 3D conformations of macrocycles may be linked to physicochemical properties and permeability. Combined use of quantitative structure-permeability modeling and the procedure for conformational analysis now, for the first time, provides chemists with a rational approach to design cell-permeable non-peptidic macrocycles with potential for oral absorption.


Journal of Chemical Information and Modeling | 2007

Screening of matrix metalloproteinases available from the protein data bank: insights into biological functions, domain organization, and zinc binding groups.

Orazio Nicolotti; Teresa Fabiola Miscioscia; Francesco Leonetti; Giovanni Muncipinto; Angelo Carotti

A total of 142 matrix metalloproteinase (MMP) X-ray crystallographic structures were retrieved from the Protein Data Bank (PDB) and analyzed by an automated and efficient routine, developed in-house, with a series of bioinformatic tools. Highly informative heat maps and hierarchical clusterograms provided a reliable and comprehensive representation of the relationships existing among MMPs, enlarging and complementing the current knowledge in the field. Multiple sequence and structural alignments permitted better location and display of key MMP motifs and quantification of the residue consensus at each amino acid position in the most critical binding subsites of MMPs. The MMP active site consensus sequences, the C-alpha root-mean-square deviation (RMSd) analysis of diverse enzymatic subsites, and the examination of the chemical nature, binding topologies, and zinc binding groups (ZBGs) of ligands extracted from crystallographic complexes provided useful insights on the structural arrangements of the most potent MMP inhibitors.


ACS Medicinal Chemistry Letters | 2014

Diversity-oriented synthesis yields a new drug lead for treatment of chagas disease.

Sivaraman Dandapani; Andrew Germain; Ivan Jewett; Sebastian le Quement; Jean-Charles Marie; Giovanni Muncipinto; Jeremy R. Duvall; Leigh C. Carmody; Jose R. Perez; Juan C. Engel; Jiri Gut; Danielle Kellar; Jair L. Siqueira-Neto; James H. McKerrow; Marcel Kaiser; Ana Rodriguez; Michelle Palmer; Michael Foley; Stuart L. Schreiber; Benito Munoz

A phenotypic high-throughput screen using ∼100,000 compounds prepared using Diversity-Oriented Synthesis yielded stereoisomeric compounds with nanomolar growth-inhibition activity against the parasite Trypanosoma cruzi, the etiological agent of Chagas disease. After evaluating stereochemical dependence on solubility, plasma protein binding and microsomal stability, the SSS analogue (5) was chosen for structure-activity relationship studies. The p-phenoxy benzyl group appended to the secondary amine could be replaced with halobenzyl groups without loss in potency. The exocyclic primary alcohol is not needed for activity but the isonicotinamide substructure is required for activity. Most importantly, these compounds are trypanocidal and hence are attractive as drug leads for both acute and chronic stages of Chagas disease. Analogue (5) was nominated as the molecular libraries probe ML341 and is available through the Molecular Libraries Probe Production Centers Network.


PLOS ONE | 2015

Modulators of Hepatic Lipoprotein Metabolism Identified in a Search for Small-Molecule Inducers of Tribbles Pseudokinase 1 Expression

Marek M. Nagiec; Adam Skepner; Joseph Negri; Michelle Eichhorn; Nicolas Kuperwasser; Eamon Comer; Giovanni Muncipinto; Aravind Subramanian; Clary B. Clish; Kiran Musunuru; Jeremy R. Duvall; Michael Foley; Jose R. Perez; Michelle Palmer

Recent genome wide association studies have linked tribbles pseudokinase 1 (TRIB1) to the risk of coronary artery disease (CAD). Based on the observations that increased expression of TRIB1 reduces secretion of VLDL and is associated with lower plasma levels of LDL cholesterol and triglycerides, higher plasma levels of HDL cholesterol and reduced risk for myocardial infarction, we carried out a high throughput phenotypic screen based on quantitative RT-PCR assay to identify compounds that induce TRIB1 expression in human HepG2 hepatoma cells. In a screen of a collection of diversity-oriented synthesis (DOS)-derived compounds, we identified a series of benzofuran-based compounds that upregulate TRIB1 expression and phenocopy the effects of TRIB1 cDNA overexpression, as they inhibit triglyceride synthesis and apoB secretion in cells. In addition, the compounds downregulate expression of MTTP and APOC3, key components of the lipoprotein assembly pathway. However, CRISPR-Cas9 induced chromosomal disruption of the TRIB1 locus in HepG2 cells, while confirming its regulatory role in lipoprotein metabolism, demonstrated that the effects of benzofurans persist in TRIB1-null cells indicating that TRIB1 is sufficient but not necessary to transmit the effects of the drug. Remarkably, active benzofurans, as well as natural products capable of TRIB1 upregulation, also modulate hepatic cell cholesterol metabolism by elevating the expression of LDLR transcript and LDL receptor protein, while reducing the levels of PCSK9 transcript and secreted PCSK9 protein and stimulating LDL uptake. The effects of benzofurans are not masked by cholesterol depletion and are independent of the SREBP-2 regulatory circuit, indicating that these compounds represent a novel class of chemically tractable small-molecule modulators that shift cellular lipoprotein metabolism in HepG2 cells from lipogenesis to scavenging.


Journal of Medicinal Chemistry | 2014

Diversity-Oriented Synthesis-Facilitated Medicinal Chemistry: Toward the Development of Novel Antimalarial Agents

Eamon Comer; Jennifer A. Beaudoin; Nobutaka Kato; Mark E. Fitzgerald; Richard Heidebrecht; Maurice duPont Lee; Daniela Masi; Marion Mercier; Carol Mulrooney; Giovanni Muncipinto; Ann Rowley; Keila N. Crespo-Lladó; Adelfa E. Serrano; Amanda K Lukens; Roger Wiegand; Dyann F. Wirth; Michelle Palmer; Michael Foley; Benito Munoz; Christina Scherer; Jeremy R. Duvall; Stuart L. Schreiber

Here, we describe medicinal chemistry that was accelerated by a diversity-oriented synthesis (DOS) pathway, and in vivo studies of our previously reported macrocyclic antimalarial agent that derived from the synthetic pathway. Structure–activity relationships that focused on both appendage and skeletal features yielded a nanomolar inhibitor of P. falciparum asexual blood-stage growth with improved solubility and microsomal stability and reduced hERG binding. The build/couple/pair (B/C/P) synthetic strategy, used in the preparation of the original screening library, facilitated medicinal chemistry optimization of the antimalarial lead.

Collaboration


Dive into the Giovanni Muncipinto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge