Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy R. Duvall is active.

Publication


Featured researches published by Jeremy R. Duvall.


Journal of the American Chemical Society | 2010

An aldol-based build/couple/pair strategy for the synthesis of medium- and large-sized rings: discovery of macrocyclic histone deacetylase inhibitors.

Lisa A. Marcaurelle; Eamon Comer; Sivaraman Dandapani; Jeremy R. Duvall; Baudouin Gerard; Sarathy Kesavan; Maurice D. Lee; Haibo Liu; Jason T. Lowe; Jean-Charles Marie; Carol Mulrooney; Bhaumik A. Pandya; Ann Rowley; Troy D. Ryba; Byung-Chul Suh; Jingqiang Wei; Damian W. Young; Lakshmi B. Akella; Nathan T. Ross; Yan-Ling Zhang; Daniel M. Fass; Surya A. Reis; Wen-Ning Zhao; Stephen J. Haggarty; Michelle Palmer; Michael A. Foley

An aldol-based build/couple/pair (B/C/P) strategy was applied to generate a collection of stereochemically and skeletally diverse small molecules. In the build phase, a series of asymmetric syn- and anti-aldol reactions were performed to produce four stereoisomers of a Boc-protected γ-amino acid. In addition, both stereoisomers of O-PMB-protected alaninol were generated to provide a chiral amine coupling partner. In the couple step, eight stereoisomeric amides were synthesized by coupling the chiral acid and amine building blocks. The amides were subsequently reduced to generate the corresponding secondary amines. In the pair phase, three different reactions were employed to enable intramolecular ring-forming processes: nucleophilic aromatic substitution (S(N)Ar), Huisgen [3+2] cycloaddition, and ring-closing metathesis (RCM). Despite some stereochemical dependencies, the ring-forming reactions were optimized to proceed with good to excellent yields, providing a variety of skeletons ranging in size from 8- to 14-membered rings. Scaffolds resulting from the RCM pairing reaction were diversified on the solid phase to yield a 14 400-membered library of macrolactams. Screening of this library led to the discovery of a novel class of histone deacetylase inhibitors, which display mixed enzyme inhibition, and led to increased levels of acetylation in a primary mouse neuron culture. The development of stereo-structure/activity relationships was made possible by screening all 16 stereoisomers of the macrolactams produced through the aldol-based B/C/P strategy.


Journal of Organic Chemistry | 2012

Synthesis and Profiling of a Diverse Collection of Azetidine-Based Scaffolds for the Development of CNS-Focused Lead-like Libraries

Jason T. Lowe; Maurice D. Lee; Lakshmi B. Akella; Emeline L. Davoine; Etienne J. Donckele; Landon Durak; Jeremy R. Duvall; Baudouin Gerard; Edward B. Holson; Adrien Joliton; Sarathy Kesavan; Bérénice C. Lemercier; Haibo Liu; Jean-Charles Marie; Carol Mulrooney; Giovanni Muncipinto; Morgan Welzel O’Shea; Laura M. Panko; Ann Rowley; Byung-Chul Suh; Méryl Thomas; Florence F. Wagner; Jingqiang Wei; Michael A. Foley; Lisa A. Marcaurelle

The synthesis and diversification of a densely functionalized azetidine ring system to gain access to a wide variety of fused, bridged, and spirocyclic ring systems is described. The in vitro physicochemical and pharmacokinetic properties of representative library members are measured in order to evaluate the use of these scaffolds for the generation of lead-like molecules to be used in targeting the central nervous system. The solid-phase synthesis of a 1976-membered library of spirocyclic azetidines is also described.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling

Mathias J. Wawer; Kejie Li; Sigrun M. Gustafsdottir; Vebjorn Ljosa; Nicole E. Bodycombe; Melissa A. Marton; Katherine L. Sokolnicki; Mark-Anthony Bray; Melissa M. Kemp; Ellen Winchester; Bradley K. Taylor; George B. Grant; C. Suk-Yee Hon; Jeremy R. Duvall; J. Anthony Wilson; Joshua Bittker; Vlado Dančík; Rajiv Narayan; Aravind Subramanian; Wendy Winckler; Todd R. Golub; Anne E. Carpenter; Alykhan F. Shamji; Stuart L. Schreiber; Paul A. Clemons

Significance A large compound screening collection is usually constructed to be tested in many distinct assays, each one designed to find modulators of a different biological process. However, it is generally not known to what extent a compound collection actually contains molecules with distinct biological effects (or even any effect) until it has been tested for a couple of years. This study explores a cost-effective way of rapidly assessing the biological performance diversity of a screening collection in a single assay. By simultaneously measuring a large number of cellular features, unbiased profiling assays can distinguish compound effects with high resolution and thus measure performance diversity. We show that this approach could be used as a filtering strategy to build effective screening collections. High-throughput screening has become a mainstay of small-molecule probe and early drug discovery. The question of how to build and evolve efficient screening collections systematically for cell-based and biochemical screening is still unresolved. It is often assumed that chemical structure diversity leads to diverse biological performance of a library. Here, we confirm earlier results showing that this inference is not always valid and suggest instead using biological measurement diversity derived from multiplexed profiling in the construction of libraries with diverse assay performance patterns for cell-based screens. Rather than using results from tens or hundreds of completed assays, which is resource intensive and not easily extensible, we use high-dimensional image-based cell morphology and gene expression profiles. We piloted this approach using over 30,000 compounds. We show that small-molecule profiling can be used to select compound sets with high rates of activity and diverse biological performance.


Nature | 2016

Diversity-oriented synthesis yields novel multistage antimalarial inhibitors

Nobutaka Kato; Eamon Comer; Tomoyo Sakata-Kato; Arvind Sharma; Manmohan Sharma; Micah Maetani; Jessica Bastien; Nicolas M. B. Brancucci; Joshua Bittker; Victoria C. Corey; David C. Clarke; Emily R. Derbyshire; Gillian L. Dornan; Sandra Duffy; Sean Eckley; Maurice A. Itoe; Karin M. J. Koolen; Timothy A. Lewis; Ping S. Lui; Amanda K Lukens; Emily Lund; Sandra March; Elamaran Meibalan; Bennett C. Meier; Jacob A. McPhail; Branko Mitasev; Eli L. Moss; Morgane Sayes; Yvonne Van Gessel; Mathias J. Wawer

Antimalarial drugs have thus far been chiefly derived from two sources—natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.


Journal of Medicinal Chemistry | 2014

Impact of stereospecific intramolecular hydrogen bonding on cell permeability and physicochemical properties.

Björn Over; Patrick McCarren; Per Artursson; Michael Foley; Fabrizio Giordanetto; Gunnar Grönberg; Constanze Hilgendorf; Maurice D. Lee; Pär Matsson; Giovanni Muncipinto; Mélanie Pellisson; Matthew Perry; Richard Svensson; Jeremy R. Duvall; Jan Kihlberg

Profiling of eight stereoisomeric T. cruzi growth inhibitors revealed vastly different in vitro properties such as solubility, lipophilicity, pKa, and cell permeability for two sets of four stereoisomers. Using computational chemistry and NMR spectroscopy, we identified the formation of an intramolecular NH→NR3 hydrogen bond in the set of stereoisomers displaying lower solubility, higher lipophilicity, and higher cell permeability. The intramolecular hydrogen bond resulted in a significant pKa difference that accounts for the other structure–property relationships. Application of this knowledge could be of particular value to maintain the delicate balance of size, solubility, and lipophilicity required for cell penetration and oral administration for chemical probes or therapeutics with properties at, or beyond, Lipinski’s rule of 5.


ACS Medicinal Chemistry Letters | 2012

Diversity-Oriented Synthesis Yields a Novel Lead for the Treatment of Malaria

Richard Heidebrecht; Carol Mulrooney; Christopher P. Austin; Robert Barker; Jennifer A. Beaudoin; Ken Chih-Chien Cheng; Eamon Comer; Sivaraman Dandapani; Justin Dick; Jeremy R. Duvall; Eric Ekland; David A. Fidock; Mark E. Fitzgerald; Michael A. Foley; Rajarshi Guha; Paul L. Hinkson; Martin Kramer; Amanda K Lukens; Daniela Masi; Lisa A. Marcaurelle; Xin-Zhuan Su; Craig J. Thomas; Michel Weiwer; Roger Wiegand; Dyann F. Wirth; Menghang Xia; Jing Yuan; Jinghua Zhao; Michelle Palmer; Benito Munoz

Here, we describe the discovery of a novel antimalarial agent using phenotypic screening of Plasmodium falciparum asexual blood-stage parasites. Screening a novel compound collection created using diversity-oriented synthesis (DOS) led to the initial hit. Structure–activity relationships guided the synthesis of compounds having improved potency and water solubility, yielding a subnanomolar inhibitor of parasite asexual blood-stage growth. Optimized compound 27 has an excellent off-target activity profile in erythrocyte lysis and HepG2 assays and is stable in human plasma. This compound is available via the molecular libraries probe production centers network (MLPCN) and is designated ML238.


Organic chemistry frontiers | 2014

Catalytic asymmetric allylation of carbonyl compounds and imines with allylic boronates

Hua-Xing Huo; Jeremy R. Duvall; Meng-Yuan Huang; Ran Hong

Enantioselective allylation is a highly used organic reaction to prepare chiral homoallylic alcohols and amines, which serve as important building blocks in the synthesis of a variety of natural products and pharmaceuticals. In particular, catalytic asymmetric allylation of carbonyl compounds and imines with organoboronates has seen rapid development in the past decade and is the focus of this review.


Nature Chemical Biology | 2016

Structural and conformational determinants of macrocycle cell permeability

Björn Over; Pär Matsson; Christian Tyrchan; Per Artursson; Bradley C. Doak; Michael Foley; Constanze Hilgendorf; Stephen Johnston; Maurice D. Lee; Richard J. Lewis; Patrick McCarren; Giovanni Muncipinto; Ulf Norinder; Matthew Perry; Jeremy R. Duvall; Jan Kihlberg

Macrocycles are of increasing interest as chemical probes and drugs for intractable targets like protein-protein interactions, but the determinants of their cell permeability and oral absorption are poorly understood. To enable rational design of cell-permeable macrocycles, we generated an extensive data set under consistent experimental conditions for more than 200 non-peptidic, de novo-designed macrocycles from the Broad Institutes diversity-oriented screening collection. This revealed how specific functional groups, substituents and molecular properties impact cell permeability. Analysis of energy-minimized structures for stereo- and regioisomeric sets provided fundamental insight into how dynamic, intramolecular interactions in the 3D conformations of macrocycles may be linked to physicochemical properties and permeability. Combined use of quantitative structure-permeability modeling and the procedure for conformational analysis now, for the first time, provides chemists with a rational approach to design cell-permeable non-peptidic macrocycles with potential for oral absorption.


ACS Combinatorial Science | 2012

Build/couple/pair strategy for the synthesis of stereochemically diverse macrolactams via head-to-tail cyclization.

Mark E. Fitzgerald; Carol Mulrooney; Jeremy R. Duvall; Jingqiang Wei; Byung-Chul Suh; Lakshmi B. Akella; Anita Vrcic; Lisa A. Marcaurelle

A build/couple/pair (B/C/P) strategy was employed to generate a library of 7936 stereochemically diverse 12-membered macrolactams. All 8 stereoisomers of a common linear amine precursor were elaborated to form the corresponding 8 stereoisomers of two regioisomeric macrocyclic scaffolds via head-to-tail cyclization. Subsequently, these 16 scaffolds were further diversified via capping of two amine functionalities on SynPhase Lanterns. Reagents used for solid-phase diversification were selected using a sparse matrix design strategy with the aim of maximizing coverage of chemical space while adhering to a preset range of physicochemical properties.


ACS Medicinal Chemistry Letters | 2014

Diversity-oriented synthesis yields a new drug lead for treatment of chagas disease.

Sivaraman Dandapani; Andrew Germain; Ivan Jewett; Sebastian le Quement; Jean-Charles Marie; Giovanni Muncipinto; Jeremy R. Duvall; Leigh C. Carmody; Jose R. Perez; Juan C. Engel; Jiri Gut; Danielle Kellar; Jair L. Siqueira-Neto; James H. McKerrow; Marcel Kaiser; Ana Rodriguez; Michelle Palmer; Michael Foley; Stuart L. Schreiber; Benito Munoz

A phenotypic high-throughput screen using ∼100,000 compounds prepared using Diversity-Oriented Synthesis yielded stereoisomeric compounds with nanomolar growth-inhibition activity against the parasite Trypanosoma cruzi, the etiological agent of Chagas disease. After evaluating stereochemical dependence on solubility, plasma protein binding and microsomal stability, the SSS analogue (5) was chosen for structure-activity relationship studies. The p-phenoxy benzyl group appended to the secondary amine could be replaced with halobenzyl groups without loss in potency. The exocyclic primary alcohol is not needed for activity but the isonicotinamide substructure is required for activity. Most importantly, these compounds are trypanocidal and hence are attractive as drug leads for both acute and chronic stages of Chagas disease. Analogue (5) was nominated as the molecular libraries probe ML341 and is available through the Molecular Libraries Probe Production Centers Network.

Collaboration


Dive into the Jeremy R. Duvall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge