Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Perini is active.

Publication


Featured researches published by Giovanni Perini.


Blood | 2008

Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance

Ilaria Iacobucci; Annalisa Lonetti; Francesca Messa; Daniela Cilloni; Francesca Arruga; Emanuela Ottaviani; Stefania Paolini; Cristina Papayannidis; Pier Paolo Piccaluga; Panagiota Giannoulia; Simona Soverini; Marilina Amabile; Angela Poerio; Giuseppe Saglio; Fabrizio Pane; Giorgio Berton; Anna Baruzzi; Antonella Vitale; Sabina Chiaretti; Giovanni Perini; Robin Foà; Michele Baccarani; Giovanni Martinelli

Ikaros plays an important role in the control of differentiation and proliferation of all lymphoid lineages. The expression of short isoforms lacking DNA-binding motifs alters the differentiation capacities of hematopoietic progenitors, arresting lineage commitment. We sought to determine whether molecular abnormalities involving the IKZF1 gene were associated with resistance to tyrosine kinase inhibitors (TKIs) in Ph+ acute lymphoblastic leukemia (ALL) patients. Using reverse-transcribed polymerase chain reaction, cloning, and nucleotide sequencing, only the non-DNA-binding Ik6 isoform was detected in 49% of Ph+ ALL patients. Ik6 was predominantly localized to the cytoplasm versus DNA-binding Ik1 or Ik2 isoforms, which showed nuclear localization. There was a strong correlation between nonfunctional Ikaros isoforms and BCR-ABL transcript level. Furthermore, patient-derived leukemia cells expressed oncogenic Ikaros isoforms before TKI treatment, but not during response to TKIs, and predominantly at the time of relapse. In vitro overexpression of Ik6 strongly increased DNA synthesis and inhibited apoptosis in TKI-sensitive cells. Genomic sequence and computational analyses of exon splice junction regions of IKZF1 in Ph+ ALL patients predicted several mutations that may alter alternative splicing. These results establish a previously unknown link between specific molecular defects that involve alternative splicing of the IKZF1 gene and the resistance to TKIs in Ph+ ALL patients.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Activation of tissue transglutaminase transcription by histone deacetylase inhibition as a therapeutic approach for Myc oncogenesis

Tao Liu; Andrew E. Tee; Antonio Porro; Stewart A. Smith; Tanya Dwarte; Pei Yan Liu; Nunzio Iraci; Eric Sekyere; Michelle Haber; Murray D. Norris; Daniel Diolaiti; Giuliano Della Valle; Giovanni Perini; Glenn M. Marshall

Histone deacetylase (HDAC) inhibitors reactivate tumor suppressor gene transcription; induce cancer cell differentiation, growth arrest, and programmed cell death; and are among the most promising new classes of anticancer drugs. Myc oncoproteins can block cell differentiation and promote cell proliferation and malignant transformation, in some cases by modulating target gene transcription. Here, we show that tissue transglutaminase (TG2) was commonly reactivated by HDAC inhibitors in neuroblastoma and breast cancer cells but not normal cells and contributed to HDAC inhibitor-induced growth arrest. TG2 was the gene most significantly repressed by N-Myc in neuroblastoma cells in a cDNA microarray analysis and was commonly repressed by N-Myc in neuroblastoma cells and c-Myc in breast cancer cells. Repression of TG2 expression by N-Myc in neuroblastoma cells was necessary for the inhibitory effect of N-Myc on neuroblastoma cell differentiation. Dual step cross-linking chromatin immunoprecipitation and protein coimmunoprecipitation assays showed that N-Myc acted as a transrepressor by recruiting the HDAC1 protein to an Sp1-binding site in the TG2 core promoter in a manner distinct from its action as a transactivator at E-Box binding sites. HDAC inhibitor treatment blocked the N-Myc-mediated HDAC1 recruitment and TG2 repression in vitro. In neuroblastoma-bearing N-Myc transgenic mice, HDAC inhibitor treatment induced TG2 expression and demonstrated marked antitumor activity in vivo. Taken together, our data indicate the critical roles of HDAC1 and TG2 in Myc-induced oncogenesis and have significant implications for the use of HDAC inhibitor therapy in Myc-driven oncogenesis.


Cancer Research | 2010

p53 Is a Direct Transcriptional Target of MYCN in Neuroblastoma

Lindi Chen; Nunzio Iraci; Samuele Gherardi; Laura D. Gamble; Katrina M. Wood; Giovanni Perini; John Lunec; Deborah A. Tweddle

MYCN amplification occurs in approximately 25% of neuroblastomas, where it is associated with rapid tumor progression and poor prognosis. MYCN plays a paradoxical role in driving cellular proliferation and inducing apoptosis. Based on observations of nuclear p53 accumulation in neuroblastoma, we hypothesized that MYCN may regulate p53 in this setting. Immunohistochemical analysis of 82 neuroblastoma tumors showed an association of high p53 expression with MYCN expression and amplification. In a panel of 5 MYCN-amplified and 5 nonamplified neuroblastoma cell lines, and also in the Tet21N-regulatable MYCN expression system, we further documented a correlation between the expression of MYCN and p53. In MYCN-amplified neuroblastoma cell lines, MYCN knockdown decreased p53 expression. In Tet21N MYCN+ cells, higher levels of p53 transcription, mRNA, and protein were observed relative to Tet21N MYCN- cells. In chromatin immunoprecipitation and reporter gene assays, MYCN bound directly to a Myc E-Box DNA binding motif located close to the transcriptional start site within the p53 promoter, where it could initiate transcription. E-Box mutation decreased MYCN-driven transcriptional activation. Microarray analysis of Tet21N MYCN+/- cells identified several p53-regulated genes that were upregulated in the presence of MYCN, including MDM2 and PUMA, the levels of which were reduced by MYCN knockdown. We concluded that MYCN transcriptionally upregulates p53 in neuroblastoma and uses p53 to mediate a key mechanism of apoptosis.


Oncogene | 2010

Transcriptional upregulation of histone deacetylase 2 promotes Myc-induced oncogenic effects

Glenn M. Marshall; Samuele Gherardi; Ning Xu; Z Neiron; Toby Trahair; Christopher J. Scarlett; David K. Chang; Pei Yan Liu; K Jankowski; Nunzio Iraci; Michelle Haber; Murray D. Norris; Joanna Keating; Eric Sekyere; Georg von Jonquieres; Fabio Stossi; Benita S. Katzenellenbogen; Andrew V. Biankin; Giovanni Perini; Tao Liu

Myc oncoproteins and histone deacetylases (HDACs) modulate gene transcription and enhance cancer cell proliferation, and HDAC inhibitors are among the most promising new classes of anticancer drugs. Here, we show that N-Myc and c-Myc upregulated HDAC2 gene expression in neuroblastoma and pancreatic cancer cells, respectively, which contributed to N-Myc- and c-Myc-induced cell proliferation. Cyclin G2 (CCNG2) was commonly repressed by N-Myc and HDAC2 in neuroblastoma cells and by c-Myc and HDAC2 in pancreatic cancer cells, and could be reactivated by HDAC inhibitors. 5-bromo-2′-deoxyuridine incorporation assays showed that transcriptional repression of CCNG2 was, in part, responsible for N-Myc-, c-Myc- and HDAC2-induced cell proliferation. Dual crosslinking chromatin immunoprecipitation assay demonstrated that N-Myc acted as a transrepressor by recruiting the HDAC2 protein to Sp1-binding sites at the CCNG2 gene core promoter. Moreover, HDAC2 was upregulated, and CCNG2 downregulated, in pre-cancerous and neuroblastoma tissues from N-Myc transgenic mice, and c-Myc overexpression correlated with upregulation of HDAC2 and repression of CCNG2 in tumour tissues from pancreatic cancer patients. Taken together, our data indicate the critical roles of upregulation of HDAC2 and suppression of CCNG2 in Myc-induced oncogenesis, and have significant implications for the application of HDAC inhibitors in the prevention and treatment of Myc-driven cancers.


PLOS ONE | 2009

The C-terminal domain of CENP-C displays multiple and critical functions for mammalian centromere formation.

Stefania Trazzi; Giovanni Perini; Roberto Bernardoni; Monica Zoli; Joseph C. Reese; Andrea Musacchio; Giuliano Della Valle

CENP-C is a fundamental component of functional centromeres. The elucidation of its structure-function relationship with centromeric DNA and other kinetochore proteins is critical to the understanding of centromere assembly. CENP-C carries two regions, the central and the C-terminal domains, both of which are important for the ability of CENP-C to associate with the centromeric DNA. However, while the central region is largely divergent in CENP-C homologues, the C-terminal moiety contains two regions that are highly conserved from yeast to humans, named Mif2p homology domains (blocks II and III). The activity of these two domains in human CENP-C is not well defined. In this study we performed a functional dissection of C-terminal CENP-C region analyzing the role of single Mif2p homology domains through in vivo and in vitro assays. By immunofluorescence and Chromatin immunoprecipitation assay (ChIP) we were able to elucidate the ability of the Mif2p homology domain II to target centromere and contact alpha satellite DNA. We also investigate the interactions with other conserved inner kinetochore proteins by means of coimmunoprecipitation and bimolecular fluorescence complementation on cell nuclei. We found that the C-terminal region of CENP-C (Mif2p homology domain III) displays multiple activities ranging from the ability to form higher order structures like homo-dimers and homo-oligomers, to mediate interaction with CENP-A and histone H3. Overall, our findings support a model in which the Mif2p homology domains of CENP-C, by virtue of their ability to establish multiple contacts with DNA and centromere proteins, play a critical role in the structuring of kinethocore chromatin.


Clinical Genetics | 2005

Altered gene silencing and human diseases

Giovanni Perini; Rossella Tupler

Epigenetic regulation of gene expression is mediated through several mechanisms, including modifications in DNA methylation, covalent modifications of core nucleosomal histones, rearrangement of histones and RNA interference. It is now clear that deregulation of epigenetic mechanisms cooperates with genetic alterations in the development and progression of several Mendelian disorders. Here, we summarize the recent findings that highlight how certain inherited diseases, such as Rett syndrome, Immunodeficiency–centromeric instability–facial anomalies syndrome, and facioscapulohumeral muscular dystrophy, result from altered gene silencing.


Current Pharmaceutical Design | 2010

Nitric Oxide Control of MYCN Expression and Multi Drug Resistance Genes in Tumours of Neural Origin

Antonio Porro; Christophe Chrochemore; Francesco Cambuli; Nunzio Iraci; Antonio Contestabile; Giovanni Perini

Nitric oxide (NO) exerts its function in several cell and organ compartments. Recently, several lines of evidence have been accrued showing that NO can play a critical role in oncogenesis. Here we summarize some of these findings and highlight the role of NO as a possible target for antineoplastic drugs. Specifically, NO appears to affect some aspects of neuronal tumour progression, particularly the chemoresistance phenotype, through inhibition of MYC activity and expression of a large set of ATP binding cassette transporters. Here we provide lines of evidence supporting the view that MYCN can alter expression of several members of the ABC transporter family thus influencing the chemoresistance phenotype of neuroblastoma cells. Furthermore, we show that increased intracellular NO concentration either through addition of NO donors to culture medium or through forced expression of nNOS in neuroblastoma cells leads to decreased expression of MYCN and ABC drug transporter genes. Overall, data reviewed here and novel results presented, unveil a NO-MYCN-ABC transporters axis with important implication on development and control of the chemoresistance phenotype in neuronal tumours.


Proceedings of the National Academy of Sciences of the United States of America | 2005

In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation

Giovanni Perini; Daniel Diolaiti; Antonio Porro; Giuliano Della Valle


Experimental Cell Research | 2007

Functional cooperation between TrkA and p75NTR accelerates neuronal differentiation by increased transcription of GAP-43 and p21(CIP/WAF) genes via ERK1/2 and AP-1 activities

Daniel Diolaiti; Roberto Bernardoni; Stefania Trazzi; Antonella Papa; Antonio Porro; Françoise Bono; Jean-Marc Herbert; Giovanni Perini; Giuliano Della Valle


XV Congresso Nazionale Società Italiana di Tossicologia | 2009

Association between transporters genotype and response to the treatment in a subset of previously untreated chronic myeloid leukemia patients enrolled into the tops trial.

Sabrina Angelini; Simona Soverini; Eleonora Turrini; Giovanni Perini; F. Pane; Fabrizio Quarantelli; Timothy P. Hughes; Deborah L. White; Dong-Wook Kim; Hyun-Gyung Goh; Jerald P. Radich; Lan Beppu; G. Saglio; Daniela Cilloni; Carolina Terragna; Ilaria Iacobucci; Patrizia Hrelia; Giorgio Cantelli Forti; Thea Kalebic; Mark Thornquist; Michele Baccarani; Giovanni Martinelli

Collaboration


Dive into the Giovanni Perini's collaboration.

Top Co-Authors

Avatar

Nunzio Iraci

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge