Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuliano Della Valle is active.

Publication


Featured researches published by Giuliano Della Valle.


Nature | 2011

Comparative and demographic analysis of orang-utan genomes

Devin P. Locke; LaDeana W. Hillier; Wesley C. Warren; Kim C. Worley; Lynne V. Nazareth; Donna M. Muzny; Shiaw-Pyng Yang; Zhengyuan Wang; Asif T. Chinwalla; Patrick Minx; Makedonka Mitreva; Lisa Cook; Kim D. Delehaunty; Catrina C. Fronick; Heather K. Schmidt; Lucinda A. Fulton; Robert S. Fulton; Joanne O. Nelson; Vincent Magrini; Craig S. Pohl; Tina Graves; Chris Markovic; Andy Cree; Huyen Dinh; Jennifer Hume; Christie Kovar; Gerald Fowler; Gerton Lunter; Stephen Meader; Andreas Heger

‘Orang-utan’ is derived from a Malay term meaning ‘man of the forest’ and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (Ne) expanded exponentially relative to the ancestral Ne after the split, while Bornean Ne declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.


Journal of Experimental Medicine | 2002

Role of p75 Neurotrophin Receptor in the Neurotoxicity by β-amyloid Peptides and Synergistic Effect of Inflammatory Cytokines

Giovanni Perini; Vittorina Della-Bianca; Valeria Politi; Giuliano Della Valle; Ilaria Dal-Pra; Filippo Rossi; Ubaldo Armato

The neurodegenerative changes in Alzheimers disease (AD) are elicited by the accumulation of β-amyloid peptides (Aβ), which damage neurons either directly by interacting with components of the cell surface to trigger cell death signaling or indirectly by activating astrocytes and microglia to produce inflammatory mediators. It has been recently proposed that the p75 neurotrophin receptor (p75NTR) is responsible for neuronal damage by interacting with Aβ. By using neuroblastoma cell clones lacking the expression of all neurotrophin receptors or engineered to express full-length or various truncated forms of p75NTR, we could show that p75NTR is involved in the direct signaling of cell death by Aβ via the function of its death domain. This signaling leads to the activation of caspases-8 and -3, the production of reactive oxygen intermediates and the induction of an oxidative stress. We also found that the direct and indirect (inflammatory) mechanisms of neuronal damage by Aβ could act synergistically. In fact, TNF-α and IL-1β, cytokines produced by Aβ-activated microglia, could potentiate the neurotoxic action of Aβ mediated by p75NTR signaling. Together, our results indicate that neurons expressing p75NTR, mostly if expressing also proinflammatory cytokine receptors, might be preferential targets of the cytotoxic action of Aβ in AD.


Human Molecular Genetics | 2009

DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions

Suhasni Gopalakrishnan; Beth A. Sullivan; Stefania Trazzi; Giuliano Della Valle; Keith D. Robertson

DNA methylation is an epigenetically imposed mark of transcriptional repression that is essential for maintenance of chromatin structure and genomic stability. Genome-wide methylation patterns are mediated by the combined action of three DNA methyltransferases: DNMT1, DNMT3A and DNMT3B. Compelling links exist between DNMT3B and chromosome stability as emphasized by the mitotic defects that are a hallmark of ICF syndrome, a disease arising from germline mutations in DNMT3B. Centromeric and pericentromeric regions are essential for chromosome condensation and the fidelity of segregation. Centromere regions contain distinct epigenetic marks, including dense DNA hypermethylation, yet the mechanisms by which DNA methylation is targeted to these regions remains largely unknown. In the present study, we used a yeast two-hybrid screen and identified a novel interaction between DNMT3B and constitutive centromere protein CENP-C. CENP-C is itself essential for mitosis. We confirm this interaction in mammalian cells and map the domains responsible. Using siRNA knock downs, bisulfite genomic sequencing and ChIP, we demonstrate for the first time that CENP-C recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and that CENP-C and DNMT3B regulate the histone code in these regions, including marks characteristic of centromeric chromatin. Finally, we demonstrate that loss of CENP-C or DNMT3B leads to elevated chromosome misalignment and segregation defects during mitosis and increased transcription of centromeric repeats. Taken together, our data reveal a novel mechanism by which DNA methylation is targeted to discrete regions of the genome and contributes to chromosomal stability.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Activation of tissue transglutaminase transcription by histone deacetylase inhibition as a therapeutic approach for Myc oncogenesis

Tao Liu; Andrew E. Tee; Antonio Porro; Stewart A. Smith; Tanya Dwarte; Pei Yan Liu; Nunzio Iraci; Eric Sekyere; Michelle Haber; Murray D. Norris; Daniel Diolaiti; Giuliano Della Valle; Giovanni Perini; Glenn M. Marshall

Histone deacetylase (HDAC) inhibitors reactivate tumor suppressor gene transcription; induce cancer cell differentiation, growth arrest, and programmed cell death; and are among the most promising new classes of anticancer drugs. Myc oncoproteins can block cell differentiation and promote cell proliferation and malignant transformation, in some cases by modulating target gene transcription. Here, we show that tissue transglutaminase (TG2) was commonly reactivated by HDAC inhibitors in neuroblastoma and breast cancer cells but not normal cells and contributed to HDAC inhibitor-induced growth arrest. TG2 was the gene most significantly repressed by N-Myc in neuroblastoma cells in a cDNA microarray analysis and was commonly repressed by N-Myc in neuroblastoma cells and c-Myc in breast cancer cells. Repression of TG2 expression by N-Myc in neuroblastoma cells was necessary for the inhibitory effect of N-Myc on neuroblastoma cell differentiation. Dual step cross-linking chromatin immunoprecipitation and protein coimmunoprecipitation assays showed that N-Myc acted as a transrepressor by recruiting the HDAC1 protein to an Sp1-binding site in the TG2 core promoter in a manner distinct from its action as a transactivator at E-Box binding sites. HDAC inhibitor treatment blocked the N-Myc-mediated HDAC1 recruitment and TG2 repression in vitro. In neuroblastoma-bearing N-Myc transgenic mice, HDAC inhibitor treatment induced TG2 expression and demonstrated marked antitumor activity in vivo. Taken together, our data indicate the critical roles of HDAC1 and TG2 in Myc-induced oncogenesis and have significant implications for the use of HDAC inhibitor therapy in Myc-driven oncogenesis.


Journal of Biological Chemistry | 2001

Neurotrophin p75 Receptor Is Involved in Neuronal Damage by Prion Peptide-(106–126)

Vittorina Della-Bianca; Filippo Rossi; Ubaldo Armato; Ilaria Dal-Pra; Claudio Costantini; Giovanni Perini; Valeria Politi; Giuliano Della Valle

In this work we have investigated the molecular basis of the neuronal damage induced by the prion peptide by searching for a surface receptor whose activation could be the first step of a cascade of events responsible for cell death. By using a human neuroblastoma cell line lacking all the neurotrophin receptors and derived clones expressing the full-length or truncated forms of the low affinity neurotrophin receptor (p75NTR), we have been able to demonstrate that the neuronal death induced by the prion protein fragment PrP-(106–126) is an active process mediated by a) the binding of the peptide to the extracellular region of p75NTR, b) the signaling function of the intracytoplasmic region of the receptor, and c) the activation of caspase-8 and the production of oxidant species.


Journal of Biological Chemistry | 2002

Nitric Oxide Protects Neuroblastoma Cells from Apoptosis Induced by Serum Deprivation through cAMP-response Element-binding Protein (CREB) Activation

Elisabetta Ciani; Sandra Guidi; Giuliano Della Valle; Giovanni Perini; Renata Bartesaghi; Antonio Contestabile

The transcription factor cAMP-response element-binding protein (CREB) mediates survival in many cells, including neurons. Recently, death of cerebellar granule neurons due to nitric oxide (NO) deprivation was shown to be accompanied by down-regulation of CREB activity (1). We now provide evidence that overproduction of endogenous NO or supplementation with exogenous NO renders SK-N-BE human neuroblastoma cells more resistant to apoptosis induced by serum deprivation. Parental cells underwent apoptosis after 24 h of serum deprivation, an outcome largely absent in clones overexpressing human neuronal nitric oxide synthase (nNOS). This protective effect was reversed by the inhibition of NOS itself or soluble guanylyl cyclase, pointing at cGMP as an intermediate effector of NO-mediated rescue. A slow-releasing NO donor protected parental cells to a significant extent, thus confirming the survival effect of NO. The impaired viability of serum-deprived parental cells was accompanied by a strong decrease of CREB phosphorylation and transcriptional activity, effects significantly attenuated in nNOS-overexpressing clones. To confirm the role of CREB in survival, the ectopic expression of CREB and/or protein kinase A largely counteracted serum deprivation-induced cell death of SK-N-BE cells, whereas transfection with a CREB negative mutant was ineffective. These experiments indicate that CREB activity is an important step for NO-mediated survival in neuronal cells.


Chromosome Research | 1999

Identification of the gene-richest bands in human prometaphase chromosomes.

Salvatore Saccone; Concetta Federico; Irina Solovei; Marie-Françoise Croquette; Giuliano Della Valle; Giorgio Bernardi

The human genome is a mosaic of long, compositionally homogeneous DNA segments, the isochores, that can be partitioned into five families, two GC-poor families (L1 and L2), representing 63% of the genome, and three GC-rich families (H1, H2 and H3), representing 24%, 7.5% and 4–5% of the genome, respectively. Gene concentration increases with increasing GC levels, reaching a level 20-fold higher in H3 compared with L isochores. In-situ hybridization of DNA from different isochore families provides, therefore, information on the chromosomal distribution of genes. Using this approach, three subsets of reverse or Giemsa-negative bands, H3+, H3* and H3-, containing large, moderate, and no detectable amounts, respectively, of the gene-richest H3 isochores were identified at a resolution of 400 bands. H3+ bands largely coincide with the most heat-denaturation-resistant bands, the chromomycin-A3-positive, DAPI-negative bands, the bands with the highest CpG island concentrations, and the earliest replicating bands. Here, we have defined the H3+ bands at a 850-band resolution, and have thus identified the human genome regions, having an average size of 4Mb, that are endowed with the highest gene density.


Oncogene | 1997

Induction of apoptosis by p75 neurotrophin receptor in human neuroblastoma cells.

Giuseppe Bunone; Agnese Mariotti; Amelia Compagni; Elena Morandi; Giuliano Della Valle

The low-affinity nerve growth factor receptor p75NTR belongs to a membrane receptor superfamily whose members, in certain cell types, are able to transduce an apoptotic signal. To investigate the effect of p75NTR expression in neuroblastoma cells, we transfected the p75NTR cDNA into SK-N-BE cells, a neuroblastoma cell line that lacks expression of both p75NTR and TrkA. Cell clones expressing elevated levels of p75NTR showed a high degree of cell death by apoptosis, even in serum-supplemented medium. Moreover, the level of apoptosis correlated directly with the expression level of the receptor, indicating that p75NTR could activate the cell death program by itself. Clones expressing p75NTR showed a dramatic increase of cell death when switched into serum-free medium; these cultures rapidly extinguished. This apoptotic effect was greatly inhibited by NGF treatment. Our results support the hypothesis that p75NTR, when it is not bound by NGF, may play a role in neuronal selection during embryonic development and suggest that neuroblastomas may arise from immature neuroblasts that escape programmed cell death. Therefore, the loss of p75NTR expression in developing neural crest cells might be a primary event in the genesis of neuroblastoma.


Cancer Research | 2011

A SP1/MIZ1/MYCN Repression Complex Recruits HDAC1 at the TRKA and p75NTR Promoters and Affects Neuroblastoma Malignancy by Inhibiting the Cell Response to NGF

Nunzio Iraci; Daniel Diolaiti; Antonella Papa; Antonio Porro; Emanuele Valli; Samuele Gherardi; Steffi Herold; Martin Eilers; Roberto Bernardoni; Giuliano Della Valle; Giovanni Perini

Neuroblastoma is the most common extracranial solid tumor of childhood. One important factor that predicts a favorable prognosis is the robust expression of the TRKA and p75NTR neurotrophin receptor genes. Interestingly, TRKA and p75NTR expression is often attenuated in aggressive MYCN-amplified tumors, suggesting a causal link between elevated MYCN activity and the transcriptional repression of TRKA and p75NTR, but the precise mechanisms involved are unclear. Here, we show that MYCN acts directly to repress TRKA and p75NTR gene transcription. Specifically, we found that MYCN levels were critical for repression and that MYCN targeted proximal/core promoter regions by forming a repression complex with transcription factors SP1 and MIZ1. When bound to the TRKA and p75NTR promoters, MYCN recruited the histone deacetylase HDAC1 to induce a repressed chromatin state. Forced re-expression of endogenous TRKA and p75NTR with exposure to the HDAC inhibitor TSA sensitized neuroblastoma cells to NGF-mediated apoptosis. By directly connecting MYCN to the repression of TRKA and p75NTR, our findings establish a key pathway of clinical pathogenicity and aggressiveness in neuroblastoma.


Genome Research | 2011

Genome-wide characterization of centromeric satellites from multiple mammalian genomes

Can Alkan; Maria Francesca Cardone; Claudia Rita Catacchio; Francesca Antonacci; Stephen J. O'Brien; Oliver A. Ryder; Stefania Purgato; Monica Zoli; Giuliano Della Valle; Evan E. Eichler; Mario Ventura

Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.

Collaboration


Dive into the Giuliano Della Valle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge