Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Pezzulo is active.

Publication


Featured researches published by Giovanni Pezzulo.


The Cerebellum | 2014

Consensus Paper: The Cerebellum's Role in Movement and Cognition

Leonard F. Koziol; Deborah Ely Budding; Nancy C. Andreasen; Stefano D'Arrigo; Sara Bulgheroni; Hiroshi Imamizu; Masao Ito; Mario Manto; Cherie L. Marvel; Krystal L. Parker; Giovanni Pezzulo; Narender Ramnani; Daria Riva; Jeremy D. Schmahmann; Larry Vandervert; Tadashi Yamazaki

While the cerebellums role in motor function is well recognized, the nature of its concurrent role in cognitive function remains considerably less clear. The current consensus paper gathers diverse views on a variety of important roles played by the cerebellum across a range of cognitive and emotional functions. This paper considers the cerebellum in relation to neurocognitive development, language function, working memory, executive function, and the development of cerebellar internal control models and reflects upon some of the ways in which better understanding the cerebellums status as a “supervised learning machine” can enrich our ability to understand human function and adaptation. As all contributors agree that the cerebellum plays a role in cognition, there is also an agreement that this conclusion remains highly inferential. Many conclusions about the role of the cerebellum in cognition originate from applying known information about cerebellar contributions to the coordination and quality of movement. These inferences are based on the uniformity of the cerebellums compositional infrastructure and its apparent modular organization. There is considerable support for this view, based upon observations of patients with pathology within the cerebellum.


Natural Language Engineering | 2002

The role of domain information in Word Sense Disambiguation

Bernardo Magnini; Carlo Strapparava; Giovanni Pezzulo; Alfio Massimiliano Gliozzo

This paper explores the role of domain information in word sense disambiguation. The underlying hypothesis is that domain labels, such as MEDICINE, ARCHITECTURE and SPORT, provide a useful way to establish semantic relations among word senses, which can be profitably used during the disambiguation process. Results obtained at the SENSEVAL-2 initiative confirm that for a significant subset of words domain information can be used to disambiguate with a very high level of precision.


Cognitive Neuroscience | 2015

Active inference and epistemic value.

K. J. Friston; Francesco Rigoli; Dimitri Ognibene; Christoph Mathys; Thomas H. B. FitzGerald; Giovanni Pezzulo

We offer a formal treatment of choice behavior based on the premise that agents minimize the expected free energy of future outcomes. Crucially, the negative free energy or quality of a policy can be decomposed into extrinsic and epistemic (or intrinsic) value. Minimizing expected free energy is therefore equivalent to maximizing extrinsic value or expected utility (defined in terms of prior preferences or goals), while maximizing information gain or intrinsic value (or reducing uncertainty about the causes of valuable outcomes). The resulting scheme resolves the exploration-exploitation dilemma: Epistemic value is maximized until there is no further information gain, after which exploitation is assured through maximization of extrinsic value. This is formally consistent with the Infomax principle, generalizing formulations of active vision based upon salience (Bayesian surprise) and optimal decisions based on expected utility and risk-sensitive (Kullback-Leibler) control. Furthermore, as with previous active inference formulations of discrete (Markovian) problems, ad hoc softmax parameters become the expected (Bayes-optimal) precision of beliefs about, or confidence in, policies. This article focuses on the basic theory, illustrating the ideas with simulations. A key aspect of these simulations is the similarity between precision updates and dopaminergic discharges observed in conditioning paradigms.


Progress in Neurobiology | 2015

Active Inference, homeostatic regulation and adaptive behavioural control.

Giovanni Pezzulo; Francesco Rigoli; K. J. Friston

Highlights • An Active Inference account of homeostatic regulation and behavioural control.• Pavlovian, habitual and goal-directed behaviours explained with one scheme.• A possible phylogenetic trajectory from simpler to hierarchical controllers.• Precision-dependent processes regulate habitual and goal-directed behaviour.


Frontiers in Psychology | 2011

The mechanics of embodiment: a dialog on embodiment and computational modeling

Giovanni Pezzulo; Lawrence W. Barsalou; Angelo Cangelosi; Martin H. Fischer; Ken McRae; Michael J. Spivey

Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamoring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensorimotor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialog between two fictional characters: Ernest, the “experimenter,” and Mary, the “computational modeler.” The dialog consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modeling.


Psychological Research-psychologische Forschung | 2009

Thinking as the control of imagination: a conceptual framework for goal-directed systems

Giovanni Pezzulo; Cristiano Castelfranchi

This paper offers a conceptual framework which (re)integrates goal-directed control, motivational processes, and executive functions, and suggests a developmental pathway from situated action to higher level cognition. We first illustrate a basic computational (control-theoretic) model of goal-directed action that makes use of internal modeling. We then show that by adding the problem of selection among multiple action alternatives motivation enters the scene, and that the basic mechanisms of executive functions such as inhibition, the monitoring of progresses, and working memory, are required for this system to work. Further, we elaborate on the idea that the off-line re-enactment of anticipatory mechanisms used for action control gives rise to (embodied) mental simulations, and propose that thinking consists essentially in controlling mental simulations rather than directly controlling behavior and perceptions. We conclude by sketching an evolutionary perspective of this process, proposing that anticipation leveraged cognition, and by highlighting specific predictions of our model.


Minds and Machines | 2008

Coordinating with the Future: The Anticipatory Nature of Representation

Giovanni Pezzulo

Humans and other animals are able not only to coordinate their actions with their current sensorimotor state, but also to imagine, plan and act in view of the future, and to realize distal goals. In this paper we discuss whether or not their future-oriented conducts imply (future-oriented) representations. We illustrate the role played by anticipatory mechanisms in natural and artificial agents, and we propose a notion of representation that is grounded in the agent’s predictive capabilities. Therefore, we argue that the ability that characterizes and defines a true cognitive mind, as opposed to a merely adaptive system, is that of building representations of the non-existent, of what is not currently (yet) true or perceivable, of what is desired. A real mental activity begins when the organism is able to endogenously (i.e. not as the consequence of current perceptual stimuli) produce an internal representation of the world in order to select and guide its conduct goal-directed: the mind serves to coordinate with the future.


Frontiers in Psychology | 2013

The Mixed Instrumental Controller: Using Value of Information to Combine Habitual Choice and Mental Simulation

Giovanni Pezzulo; Francesco Rigoli; Fabian Chersi

Instrumental behavior depends on both goal-directed and habitual mechanisms of choice. Normative views cast these mechanisms in terms of model-free and model-based methods of reinforcement learning, respectively. An influential proposal hypothesizes that model-free and model-based mechanisms coexist and compete in the brain according to their relative uncertainty. In this paper we propose a novel view in which a single Mixed Instrumental Controller produces both goal-directed and habitual behavior by flexibly balancing and combining model-based and model-free computations. The Mixed Instrumental Controller performs a cost-benefits analysis to decide whether to chose an action immediately based on the available “cached” value of actions (linked to model-free mechanisms) or to improve value estimation by mentally simulating the expected outcome values (linked to model-based mechanisms). Since mental simulation entails cognitive effort and increases the reward delay, it is activated only when the associated “Value of Information” exceeds its costs. The model proposes a method to compute the Value of Information, based on the uncertainty of action values and on the distance of alternative cached action values. Overall, the model by default chooses on the basis of lighter model-free estimates, and integrates them with costly model-based predictions only when useful. Mental simulation uses a sampling method to produce reward expectancies, which are used to update the cached value of one or more actions; in turn, this updated value is used for the choice. The key predictions of the model are tested in different settings of a double T-maze scenario. Results are discussed in relation with neurobiological evidence on the hippocampus – ventral striatum circuit in rodents, which has been linked to goal-directed spatial navigation.


Neural Computation | 2017

Active inference: A process theory

K. J. Friston; Thomas H. B. FitzGerald; Francesco Rigoli; Philipp Schwartenbeck; Giovanni Pezzulo

This article describes a process theory based on active inference and belief propagation. Starting from the premise that all neuronal processing (and action selection) can be explained by maximizing Bayesian model evidence—or minimizing variational free energy—we ask whether neuronal responses can be described as a gradient descent on variational free energy. Using a standard (Markov decision process) generative model, we derive the neuronal dynamics implicit in this description and reproduce a remarkable range of well-characterized neuronal phenomena. These include repetition suppression, mismatch negativity, violation responses, place-cell activity, phase precession, theta sequences, theta-gamma coupling, evidence accumulation, race-to-bound dynamics, and transfer of dopamine responses. Furthermore, the (approximately Bayes’ optimal) behavior prescribed by these dynamics has a degree of face validity, providing a formal explanation for reward seeking, context learning, and epistemic foraging. Technically, the fact that a gradient descent appears to be a valid description of neuronal activity means that variational free energy is a Lyapunov function for neuronal dynamics, which therefore conform to Hamilton’s principle of least action.


Frontiers in Psychology | 2013

Computational Grounded Cognition: a new alliance between grounded cognition and computational modeling

Giovanni Pezzulo; Lawrence W. Barsalou; Angelo Cangelosi; Martin H. Fischer; Ken McRae; Michael J. Spivey

Grounded theories assume that there is no central module for cognition. According to this view, all cognitive phenomena, including those considered the province of amodal cognition such as reasoning, numeric, and language processing, are ultimately grounded in (and emerge from) a variety of bodily, affective, perceptual, and motor processes. The development and expression of cognition is constrained by the embodiment of cognitive agents and various contextual factors (physical and social) in which they are immersed. The grounded framework has received numerous empirical confirmations. Still, there are very few explicit computational models that implement grounding in sensory, motor and affective processes as intrinsic to cognition, and demonstrate that grounded theories can mechanistically implement higher cognitive abilities. We propose a new alliance between grounded cognition and computational modeling toward a novel multidisciplinary enterprise: Computational Grounded Cognition. We clarify the defining features of this novel approach and emphasize the importance of using the methodology of Cognitive Robotics, which permits simultaneous consideration of multiple aspects of grounding, embodiment, and situatedness, showing how they constrain the development and expression of cognition.

Collaboration


Dive into the Giovanni Pezzulo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Barca

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Rigoli

Wellcome Trust Centre for Neuroimaging

View shared research outputs
Top Co-Authors

Avatar

K. J. Friston

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge