Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Girdhari M. Sharma is active.

Publication


Featured researches published by Girdhari M. Sharma.


Molecular Nutrition & Food Research | 2009

Effects of food processing on food allergens.

Shridhar K. Sathe; Girdhari M. Sharma

Food allergies are on the rise in Western countries. With the food allergen labeling requirements in the US and EU, there is an interest in learning how food processing affects food allergens. Numerous foods are processed in different ways at home, in institutional settings, and in industry. Depending on the processing method and the food, partial or complete removal of the offending allergen may be possible as illustrated by reduction of peanut allergen in vitro IgE immunoreactivity upon soaking and blanching treatments. When the allergen is discretely located in a food, one may physically separate and remove it from the food. For example, lye peeling has been reported to produce hypoallergenic peach nectar. Protein denaturation and/or hydrolysis during food processing can be used to produce hypoallergenic products. This paper provides a short overview of basic principles of food processing followed by examples of their effects on food allergen stability. Reviewed literature suggests assessment of processing effects on clinically relevant reactivity of food allergens is warranted.


Journal of Agricultural and Food Chemistry | 2009

Solubilization and electrophoretic characterization of select edible nut seed proteins.

Shridhar K. Sathe; Mahesh Venkatachalam; Girdhari M. Sharma; Harshal H. Kshirsagar; Suzanne S. Teuber; Kenneth H. Roux

The solubility of almond, Brazil nut, cashew nut, hazelnut, macadamia, pecan, pine nut, pistachio, walnut, and peanut proteins in several aqueous solvents was qualitatively and quantitatively assessed. In addition, the effects of extraction time and ionic strength on protein solubility were also investigated. Electrophoresis and protein determination (Lowry, Bradford, and micro-Kjeldahl) methods were used for qualitative and quantitative assessment of proteins, respectively. Depending on the seed, buffer type and ionic strength significantly affected protein solubility. The results suggest that buffered sodium borate (BSB; 0.1 M H(3)BO(3), 0.025 M Na(2)B(4)O(7), 0.075 M NaCl, pH 8.45) optimally solubilizes nut seed proteins. Qualitative differences in seed protein electrophoretic profiles were revealed. For a specific seed type, these differences were dependent on the solvent(s) used to solubilize the seed proteins. SDS-PAGE results suggest the polypeptide molecular mass range for the tree nut seed proteins to be 3-100 kDa. The results of native IEF suggested that the proteins were mainly acidic, with a pI range from >4.5 to <7.0. Western immunoblotting experiments indicated that rabbit polyclonal antibodies recognized substantially the same polypeptides as those recognized by the corresponding pooled patient sera IgE.


Journal of Agricultural and Food Chemistry | 2010

Functional Properties of Select Edible Oilseed Proteins

Girdhari M. Sharma; Mengna Su; Aditya U. Joshi; Kenneth H. Roux; Shridhar K. Sathe

Borate saline buffer (0.1 M, pH 8.45) solubilized proteins from almond, Brazil nut, cashew nut, hazelnut, macadamia, pine nut, pistachio, Spanish peanut, Virginia peanut, and soybean seeds were prepared from the corresponding defatted flour. The yield was in the range from 10.6% (macadamia) to 27.4% (almond). The protein content, on a dry weight basis, of the lyophilized preparations ranged from 69.23% (pine nut) to 94.80% (soybean). Isolated proteins from Brazil nut had the lightest and hazelnut the darkest color. Isolated proteins exhibited good solubility in aqueous media. Foaming capacity (<40% overrun) and stability (<1 h) of the isolated proteins were poor to fair. Almond proteins had the highest viscosity among the tested proteins. Oil-holding capacity of the isolated proteins ranged from 2.8 (macadamia) to 7 (soybean) g of oil/g of protein. Least gelation concentrations (% w/v) for almond, Brazil nut, cashew, hazelnut, macadamia, pine nut, pistachio, Spanish peanut, Virginia peanut, and soybean were, respectively, 6, 8, 8, 12, 20, 12, 10, 14, 14, and 16.


Journal of Agricultural and Food Chemistry | 2009

A sensitive and robust competitive enzyme-linked immunosorbent assay for Brazil nut (Bertholletia excelsa L.) detection.

Girdhari M. Sharma; Kenneth H. Roux; Shridhar K. Sathe

Undeclared Brazil nut residue in food products is of great concern because it can trigger life-threatening allergic reactions in sensitive patients. A rabbit polyclonal antibody-based competitive ELISA (IC(50) = 23.2 +/- 9 ng/mL, n = 76) with good sensitivity, detection range of 10-90 ng/mL, was developed. The ELISA could detect Brazil nut seed proteins over a pH range of 5-12. The optimal pH range for the detection assay was 7-10. Among the 66 tested foods/ingredients, only cinnamon exhibited statistically significant interference (1.36%, p = 0.05). Exposing Brazil nut seeds to processing did not adversely affect the nut seed protein detection using the assay. Brazil nut seed protein recovery from 100 mg of foods spiked with 10 and 1 microg of soluble Brazil nut proteins or 100 and 10 microg of defatted Brazil nut flour exhibited a wide recovery range, 63-315%, indicating protein-food matrix interaction.


International Archives of Allergy and Immunology | 2011

Cloning, Expression and Patient IgE Reactivity of Recombinant Pru du 6, an 11S Globulin from Almond

LeAnna N. Willison; Pallavi Tripathi; Girdhari M. Sharma; Suzanne S. Teuber; Shridhar K. Sathe; Kenneth H. Roux

Background: IgE-reactive proteins have been identified in almond; however, few have been cloned and tested for specific patient IgE reactivity. Here, we clone and express prunin 1 and prunin 2, isoforms of the major almond protein prunin, an 11S globulin, and assay each for IgE reactivity. Methods: Prunin isoforms were PCR-amplified from an almond cDNA library, sequenced, cloned and expressed in Escherichia coli. Reactivity to the recombinant (r) allergens, Pru du 6.01 and Pru du 6.02, was screened by dot blot and immunoblot assays using sera from almond-allergic patients and murine monoclonal antibodies (mAbs). Sequential IgE-binding epitopes were identified by solid-phase overlapping peptide analysis. Epitope stability was assessed by assaying denatured recombinant proteins by immunoblot. Results: IgE reactivity to rPru du 6.01 and rPru du 6.02 was found in 9 of 18 (50%) and 5 of 18 patients (28%), respectively. Four patients (22%) demonstrated reactivity to both isoforms. Murine anti-almond IgG mAbs also showed greater reactivity to rPru du 6.01 than to rPru du 6.02. Both stable and labile epitopes were detected. Six IgE-binding sequential epitope-bearing peptide segments on Pru du 6.01 and 8 on Pru du 6.02 were detected using pooled almond-allergic sera. Conclusions: rPru du 6.01 is more widely recognized than rPru du 6.02 in our patient population. The identification of multiple sequential epitopes and the observation that treatment with denaturing agents had little effect on IgE-binding intensity in some patients suggests an important role for sequential epitopes on prunins.


Journal of Agricultural and Food Chemistry | 2015

Immunological characterization of the gluten fractions and their hydrolysates from wheat, rye and barley.

Prasad Rallabhandi; Girdhari M. Sharma; Marion Pereira; Kristina M. Williams

Gluten proteins in wheat, rye and barley cause celiac disease, an autoimmune disorder of the small intestine, which affects approximately 1% of the world population. Gluten is comprised of prolamin and glutelin. Since avoidance of dietary gluten is the only option for celiac patients, a sensitive gluten detection and quantitation method is warranted. Most regulatory agencies have set a threshold of 20 ppm gluten in foods labeled gluten-free, based on the currently available ELISA methods. However, these methods may exhibit differences in gluten quantitation from different gluten-containing grains. In this study, prolamin and glutelin fractions were isolated from wheat, rye, barley, oats and corn. Intact and pepsin-trypsin (PT)-digested prolamin and glutelin fractions were used to assess their immunoreactivity and gluten recovery by three sandwich and two competitive ELISA kits. The Western blots revealed varied affinity of ELISA antibodies to gluten-containing grain proteins and no reactivity to oat and corn proteins. ELISA results showed considerable variation in gluten recoveries from both intact and PT-digested gluten fractions among different kits. Prolamin fractions showed higher gluten recovery compared to their respective glutelin fractions. Among prolamins, barley exhibited higher recovery compared to wheat and rye with most of the ELISA kits used. Hydrolysis resulted in reduced gluten recovery of most gluten fractions. These results suggest that the suitability of ELISA for accurate gluten quantitation is dependent upon various factors, such as grain source, antibody specificity, gluten proteins and the level of their hydrolysis in foods.


Journal of Agricultural and Food Chemistry | 2011

Biochemical and spectroscopic characterization of almond and cashew nut seed 11S legumins, amandin and anacardein.

Harshal H. Kshirsagar; Piotr G. Fajer; Girdhari M. Sharma; Kenneth H. Roux; Shridhar K. Sathe

Native, undenatured amandin and anacardein secondary structures were estimated to be, respectively, 56.4 and 49% β-sheet, 14 and 23.7% α-helix, and 29.6 and 27.4% random coil. Circular dichroic (CD) and fluorescence spectroscopy were used to assess structural changes in amandin and anacardein subjected to denaturing treatments that included heat (100 °C, 5 min), guanidium HCl (GuHCl), urea, sodium dodecyl sulfate (SDS), and reducing agent, 2% v/v β-mercaptoethanol (βME) + heat. Mouse monoclonal antibodies (mAbs) 4C10 and 4F10 directed against amandin and 1F5 and 4C3 directed against anacardein were used to assess the influence of denaturing treatments on the immunoreactivity of amandin and anacardein. Among the denaturing treatments investigated, SDS and β-ME caused a significant reduction in the immunoreactivity of amandin and anacardein when probed with mAb 4C10 and 4C3, respectively.


Journal of Agricultural and Food Chemistry | 2013

Development of an incurred cornbread model for gluten detection by immunoassays.

Girdhari M. Sharma; Sefat E. Khuda; Marion Pereira; Andrew B. Slate; Lauren S. Jackson; Christopher Pardo; Kristina M. Williams; T. B. Whitaker

Gluten that is present in food as a result of cross-contact or misbranding can cause severe health concerns to wheat-allergic and celiac patients. Immunoassays, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow device (LFD), are commonly used to detect gluten traces in foods. However, the performance of immunoassays can be affected by non-assay-related factors, such as food matrix and processing conditions. Gluten (0-500 ppm) and wheat flour (20-1000 ppm) incurred cornbread was prepared at different incurred levels and baking conditions (204.4 °C for 20, 27, and 34 min) to study the accuracy and precision of gluten measurement by seven immunoassay kits (three LFD and four ELISA kits). The stability and immunoreactivity of gluten proteins, as measured by western blot using three different antibodies, were not adversely affected by the baking conditions. However, the gluten recovery varied depending upon the ELISA kit and the gluten source used to make the incurred cornbread, affecting the accuracy of gluten quantification (BioKits, 9-77%; Morinaga, 91-137%; R-Biopharm, 61-108%; and Romer Labs, 113-190%). Gluten recovery was reduced with increased baking time for most ELISA kits analyzed. Both the sampling and analytical variance increased with an increase in the gluten incurred level. The predicted analytical coefficient of variation associated with all ELISA kits was below 12% for all incurred levels, indicative of good analytical precision.


Journal of Agricultural and Food Chemistry | 2010

Purification and biochemical characterization of Brazil nut (Bertholletia excelsa L.) seed storage proteins.

Girdhari M. Sharma; Claudius Mundoma; Margaret Seavy; Kenneth H. Roux; Shridhar K. Sathe

Brazil nut storage proteins, 2S albumin, 7S vicilin, and an 11S legumin, were purified using column chromatography. Analytical ultracentrifugation of the purified albumin, vicilin, and legumin proteins, respectively, registered sedimentation coefficients of 1.8, 7.1, and 11.8 S. Under reducing conditions, the major polypeptide bands in 2S albumin were observed at 6.4, 10-11, and 15.2 kDa. The 7S globulin was composed of one 12.6 kDa, two approximately 38-42 kDa, and two approximately 54-57 kDa polypeptides, whereas the 11S globulin contained two major classes of polypeptides: approximately 30-32 and approximately 20-21 kDa. The 7S globulin stained positive when reacted with Schiff reagent, indicating that it is a glycoprotein. The estimated molecular mass and Stokes radius for 2S albumin and 7S and 11S globulins were 19.2 kDa and 20.1 A, 114.8 kDa and 41.1 A, and 289.4 kDa and 56.6 A, respectively. Circular dichroism spectroscopic analysis indicated the secondary structure of the three proteins to be mainly beta-sheets and turns. Emission fluorescence spectra of the native proteins registered a lambda(max) at 337, 345, and 328 nm for 2S albumin and 7S and 11S globulins, respectively. When probed with anti-Brazil nut seed protein rabbit polyclonal antibodies, 7S globulin exhibited higher immunoreactivity than 2S albumin and 11S globulin.


Journal of Agricultural and Food Chemistry | 2009

Effects of long-term frozen storage on electrophoretic patterns, immunoreactivity, and pepsin in vitro digestibility of soybean (Glycine max L.) proteins.

Shridhar K. Sathe; Girdhari M. Sharma; Harshal H. Kshirsagar; Mengna Su; Kenneth H. Roux

Soybean flours stored for 20 years at -20 degrees C retained protein polypeptide profile integrity. Proteins in stored soybean flours retained their immunoreactivity. Long-term frozen storage of seed flours at -20 degrees C did not adversely affect seed protein in vitro pepsin digestibility.

Collaboration


Dive into the Girdhari M. Sharma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prasad Rallabhandi

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Eric A. E. Garber

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Kristina M. Williams

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Mengna Su

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley Beasley Green

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge