Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gissette Reyes-Soffer is active.

Publication


Featured researches published by Gissette Reyes-Soffer.


Circulation-heart Failure | 2012

Adipose Tissue Inflammation and Adiponectin Resistance in Patients with Advanced Heart Failure: Correction after Ventricular Assist Device Implantation

Raffay Khan; Tomoko S. Kato; Aalap Chokshi; Michael Chew; Shuiqing Yu; Christina Wu; Parvati Singh; Faisal H. Cheema; Hiroo Takayama; Collette Harris; Gissette Reyes-Soffer; Ralph Knöll; Hendrik Milting; Yoshifumi Naka; Donna Mancini; P. Christian Schulze

Background— Heart failure (HF) is characterized by inflammation, insulin resistance, and progressive catabolism. We hypothesized that patients with advanced HF also develop adipose tissue inflammation associated with impaired adipokine signaling and that hemodynamic correction through implantation of ventricular assist devices (VADs) would reverse adipocyte activation and correct adipokine signaling in advanced HF. Methods and Results— Circulating insulin, adiponectin, leptin, and resistin levels were measured in 36 patients with advanced HF before and after VAD implantation and 10 healthy control subjects. Serum adiponectin was higher in HF patients before VAD implantation compared with control subjects (13.3±4.9 versus 6.4±2.1 &mgr;g/mL, P=0.02). VAD implantation (mean, 129±99 days) reduced serum adiponectin (7.4±3.4 &mgr;g/mL, P<0.05) and improved insulin resistance (Homeostasis Assessment Model of insulin resistance: 6.3±5.8–3.6±2.9; P<0.05). Adiponectin expression in adipose tissue decreased after VAD implantation (−65%; P<0.03). Adiponectin receptor expression was suppressed in the failing myocardium compared with control subjects and increased after mechanical unloading. Histomorphometric analysis of adipose tissue specimens revealed reduced adipocyte size in patients with advanced HF compared with control subjects (1999±24 &mgr;m2 versus 5583±142 &mgr;m2 in control subjects; P<0.05), which increased after VAD placement. Of note, macrophage infiltration in adipose tissue was higher in advanced HF patients compared with control subjects (+25%; P<0.01), which normalized after VAD implantation. Conclusions— Adipose tissue inflammation and adiponectin resistance develop in advanced HF. Mechanical unloading of the failing myocardium reverses adipose tissue macrophage infiltration, inflammation, and adiponectin resistance in patients with advanced HF.


Circulation | 2017

Effects of PCSK9 Inhibition With Alirocumab on Lipoprotein Metabolism in Healthy Humans

Gissette Reyes-Soffer; Marianna Pavlyha; Colleen Ngai; Tiffany Thomas; Stephen Holleran; Rajasekhar Ramakrishnan; Wahida Karmally; Renu Nandakumar; Nelson Fontanez; Joseph Obunike; Santica M. Marcovina; Alice H. Lichtenstein; Nirupa R. Matthan; James Matta; Magali Maroccia; Frederic Becue; Franck Poitiers; Brian Swanson; Lisa Cowan; William J. Sasiela; Howard K. Surks; Henry N. Ginsberg

Background: Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known whether inhibition of PCSK9 has any effects on very low-density lipoprotein or intermediate-density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma lipoprotein (a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors in the clearance of Lp(a), is poorly defined, and no mechanistic studies of the Lp(a) lowering by alirocumab in humans have been published to date. Methods: Eighteen (10 F, 8 mol/L) participants completed a placebo-controlled, 2-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCRs) and production rates (PRs) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides and apoB48 levels were measured. Results: Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was caused by an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was due to a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of very low-density lipoproteins-apoB and very low-density lipoproteins triglycerides or on postprandial plasma triglycerides or apoB48 concentrations. Conclusions: Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs and decreasing LDL-apoB PR. These results are consistent with increases in LDL receptors available to clear IDL and LDL from blood during PCSK9 inhibition. The increase in apo(a) FCR during alirocumab treatment suggests that increased LDL receptors may also play a role in the reduction of plasma Lp(a). Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01959971.


Journal of Clinical Investigation | 2015

Anacetrapib lowers LDL by increasing ApoB clearance in mildly hypercholesterolemic subjects

John S. Millar; Gissette Reyes-Soffer; Patricia Jumes; Richard L. Dunbar; Emil M. deGoma; Amanda Baer; Wahida Karmally; Daniel S. Donovan; Hashmi Rafeek; Laura Pollan; Junichiro Tohyama; Amy O. Johnson-Levonas; John A. Wagner; Stephen Holleran; Joseph C. Obunike; Yang Liu; Rajasekhar Ramakrishnan; David E. Gutstein; Henry N. Ginsberg; Daniel J. Rader

BACKGROUND Individuals treated with the cholesteryl ester transfer protein (CETP) inhibitor anacetrapib exhibit a reduction in both LDL cholesterol and apolipoprotein B (ApoB) in response to monotherapy or combination therapy with a statin. It is not clear how anacetrapib exerts these effects; therefore, the goal of this study was to determine the kinetic mechanism responsible for the reduction in LDL and ApoB in response to anacetrapib. METHODS We performed a trial of the effects of anacetrapib on ApoB kinetics. Mildly hypercholesterolemic subjects were randomized to background treatment of either placebo (n = 10) or 20 mg atorvastatin (ATV) (n = 29) for 4 weeks. All subjects then added 100 mg anacetrapib to background treatment for 8 weeks. Following each study period, subjects underwent a metabolic study to determine the LDL-ApoB-100 and proprotein convertase subtilisin/kexin type 9 (PCSK9) production rate (PR) and fractional catabolic rate (FCR). RESULTS Anacetrapib markedly reduced the LDL-ApoB-100 pool size (PS) in both the placebo and ATV groups. These changes in PS resulted from substantial increases in LDL-ApoB-100 FCRs in both groups. Anacetrapib had no effect on LDL-ApoB-100 PRs in either treatment group. Moreover, there were no changes in the PCSK9 PS, FCR, or PR in either group. Anacetrapib treatment was associated with considerable increases in the LDL triglyceride/cholesterol ratio and LDL size by NMR. CONCLUSION These data indicate that anacetrapib, given alone or in combination with a statin, reduces LDL-ApoB-100 levels by increasing the rate of ApoB-100 fractional clearance. TRIAL REGISTRATION ClinicalTrials.gov NCT00990808. FUNDING Merck & Co. Inc., Kenilworth, New Jersey, USA. Additional support for instrumentation was obtained from the National Center for Advancing Translational Sciences (UL1TR000003 and UL1TR000040).


Diabetes Care | 2013

Effect of Combination Therapy With Fenofibrate and Simvastatin on Postprandial Lipemia in the ACCORD Lipid Trial

Gissette Reyes-Soffer; Colleen I. Ngai; Laura Lovato; Wahida Karmally; Rajasekhar Ramakrishnan; Stephen Holleran; Henry N. Ginsberg

OBJECTIVE The Action to Control Cardiovascular Risk in Diabetes lipid study (ACCORD Lipid), which compared the effects of simvastatin plus fenofibrate (FENO-S) versus simvastatin plus placebo (PL-S) on cardiovascular disease outcomes, measured only fasting triglyceride (TG) levels. We examined the effects of FENO-S on postprandial (PP) lipid and lipoprotein levels in a subgroup of ACCORD Lipid subjects. RESEARCH DESIGN AND METHODS We studied 139 subjects (mean age of 61 years, 40% female, and 76% Hispanic or black) in ACCORD Lipid, from a total 529 ACCORD Lipid subjects in the Northeast Clinical Network. PP plasma TG, apolipoprotein (apo)B48, and apoCIII were measured over 10 h after an oral fat load. RESULTS The PP TG incremental area under the curve (IAUC) above fasting (median and interquartile range [mg/dL/h]) was 572 (352–907) in the FENO-S group versus 770 (429–1,420) in the PL-S group (P = 0.008). The PP apoB48 IAUC (mean ± SD [μg/mL/h]) was also reduced in the FENO-S versus the PL-S group (23.2 ± 16.3 vs. 35.2 ± 28.6; P = 0.008). Fasting TG levels on the day of study were correlated with PP TG IAUC (r = 0.73 for FENO-S and r = 0.62 for PL-S; each P < 0.001). However, the fibrate effect on PP TG IAUC was a constant percentage across the entire range of fasting TG levels, whereas PP apoB48 IAUC was only reduced when fasting TG levels were increased. CONCLUSIONS FENO-S lowered PP TG similarly in all participants compared with PL-S. However, levels of atherogenic apoB48 particles were reduced only in individuals with increased fasting levels of TG. These results may have implications for interpretation of the overall ACCORD Lipid trial, which suggested benefit from FENO-S only in dyslipidemic individuals.


Rapid Communications in Mass Spectrometry | 2013

Measurement of apo(a) kinetics in human subjects using a microfluidic device with tandem mass spectrometry

Haihong Zhou; Jose Castro-Perez; Tiffany Thomas; Wenyu Li; Theresa McLaughlin; Xie Dan; Patricia Jumes; John A. Wagner; David E. Gutstein; Brian K. Hubbard; Daniel J. Rader; John S. Millar; Henry N. Ginsberg; Gissette Reyes-Soffer; Michele A. Cleary; Stephen F. Previs; Thomas P. Roddy

RATIONALE Apolipoprotein(a) [apo(a)] is the defining protein component of lipoprotein(a) [Lp(a)], an independent risk factor for cardiovascular disease. The regulation of Lp(a) levels in blood is poorly understood in part due to technical challenges in measuring Lp(a) kinetics. Improvements in the ability to readily and reliably measure the kinetics of apo(a) using a stable isotope labeled tracer is expected to facilitate studies of the role of Lp(a) in cardiovascular disease. Since investigators typically determine the isotopic labeling of protein-bound amino acids following acid-catalyzed hydrolysis of a protein of interest [e.g., apo(a)], studies of protein synthesis require extensive protein purification which limits throughput and often requires large sample volumes. We aimed to develop a rapid and efficient method for studying apo(a) kinetics that is suitable for use in studies involving human subjects. METHODS Microfluidic device and tandem mass spectrometry were used to quantify the incorporation of [(2)H3]-leucine tracer into protein-derived peptides. RESULTS We demonstrated that it is feasible to quantify the incorporation of [(2)H3]-leucine tracer into a proteolytic peptide from the non-kringle repeat region of apo(a) in human subjects. Specific attention was directed toward optimizing the multiple reaction monitoring (MRM) transitions, mass spectrometer settings, and chromatography (i.e., critical parameters that affect the sensitivity and reproducibility of isotopic enrichment measurements). The results demonstrated significant advantages with the use of a microfluidic device technology for studying apo(a) kinetics, including enhanced sensitivity relative to conventional micro-flow chromatography, a virtually drift-free elution profile, and a stable and robust electrospray. CONCLUSIONS The technological advances described herein enabled the implementation of a novel method for studying the kinetics of apo(a) in human subjects infused with [(2)H3]-leucine.


Current Opinion in Lipidology | 2013

Niacin: a long history, but a questionable future.

Henry N. Ginsberg; Gissette Reyes-Soffer

Purpose of review To provide an update on recent mechanistic and clinical trial data related to the actions and efficacy of niacin. Recent findings Recent mechanistic studies have provided novel insights regarding the mechanism of action of niacin. Studies of the purported niacin receptor, GPR109A, indicate that niacin-mediated fatty acid-lowering and flushing are dependent on niacin binding to this receptor, whereas the lipid-altering effects of niacin may be independent of the interaction of niacin with the receptor. Two cardiovascular outcome trials – Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides: Impact on Global Health trial and HPS2-THRIVE – were both negative. Summary Niacin has been used to treat dyslipidemia for almost 60 years. Recent studies have provided clues to niacins broad lipid-altering efficacy, but more work is required to fully understand its mechanisms of action. The failure of niacin to reduce cardiovascular events in two recent placebo-controlled trials of high-risk patients with LDL-cholesterol levels less than 70 mg/dl on statins was surprising based on prior outcome and surrogate studies. We await publication of subgroup analyses to allow full assessment of those trials. In the meantime, we should not forget that niacin is an effective LDL-cholesterol-lowering drug in patients with high LDL levels despite statin treatment.


Metabolism-clinical and Experimental | 2010

Endothelial function in individuals with coronary artery disease with and without type 2 diabetes mellitus

Gissette Reyes-Soffer; Steve Holleran; Marco R. Di Tullio; Shunichi Homma; Bernadette Boden-Albala; Rajasekhar Ramakrishnan; Mitchell S.V. Elkind; Ralph L. Sacco; Henry N. Ginsberg

The goal of this study was to determine if individuals with coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM) had greater endothelial dysfunction (ED) than individuals with only CAD. Flow-mediated dilation (FMD), calculated as percentage increase in brachial artery diameter in response to postischemic blood flow, was measured after an overnight fast in 2 cohorts. The first cohort included 76 participants in the Northern Manhattan Study with CAD; 25 also had T2DM. The second cohort was composed of 27 individuals with both T2DM and CAD who were participants in a study of postprandial lipemia. Combined, we analyzed 103 patients with CAD: 52 with T2DM (T2DM+) and 51 without T2DM (T2DM-). The 52 CAD T2DM+ subjects had a mean FMD of 3.9% +/- 3.2%, whereas the 51 CAD T2DM- subjects had a greater mean FMD of 5.5% +/- 4.0% (P < .03). An investigation of various confounders known to affect FMD identified age and body mass index as the only significant covariates in a multiple regression model. Adjusting for age and body mass index, we found that FMD remained lower in T2DM+ subjects compared with T2DM- subjects (difference, -1.99%; P < .03). In patients with CAD, the concomitant presence of T2DM is independently associated with greater ED, as measured by FMD. This finding may be relevant to the greater early and late morbidity and mortality observed in patients with both CAD and T2DM.


Journal of Lipid Research | 2009

Measures of postprandial lipoproteins are not associated with coronary artery disease in patients with type 2 diabetes mellitus

Gissette Reyes-Soffer; Steve Holleran; Wahida Karmally; Colleen Ngai; Niem Tzu Chen; Margarita Torres; Rajasekhar Ramakrishnan; William S. Blaner; Lars Berglund; Henry N. Ginsberg; Catherine Tuck

Individuals with type 2 diabetes mellitus (DM) characteristically have elevated fasting and postprandial (PP) plasma triglycerides (TG). Previous case-control studies indicated that PPTG levels predict the presence of coronary artery disease (CAD) in people without DM; however, the data for patients with DM are conflicting. Therefore, we conducted a case-control study in DM individuals, 84 with (+) and 80 without (−) CAD. Our hypothesis was that DM individuals with or without CAD would have similar PPTG levels, but CAD+ individuals would have more small d<1.006 g/L lipoprotein particles. Several markers of PP lipid metabolism were measured over 10 h after a fat load. PP lipoprotein size and particle number were also determined. There was no significant difference in any measure of PP lipid metabolism between CAD+ and CAD−, except for apoB48, which was actually higher in CAD−. We followed 69 CAD− participants for a mean 8.7 years; 33 remained free of any cardiovascular event. There were no PP differences at baseline between these 33 who remained CAD− and either the 36 original CAD− who subsequently developed CAD or the original CAD+ group.PP measurements of TG-rich lipoproteins do not predict the presence of CAD in individuals with DM.


Current Cardiology Reports | 2017

Treatment of Dyslipidemias to Prevent Cardiovascular Disease in Patients with Type 2 Diabetes

Maryam Khavandi; Francisco Duarte; Henry N. Ginsberg; Gissette Reyes-Soffer

Purpose of ReviewCurrent preventive and treatment guidelines for type 2 diabetes have failed to decrease the incidence of comorbidities, such as dyslipidemia and ultimately heart disease. The goal of this review is to describe the physiological and metabolic lipid alterations that develop in patients with type 2 diabetes mellitus. Questions addressed include the differences in lipid and lipoprotein metabolism that characterize the dyslipidemia of insulin resistance and type 2 diabetes mellitus. We also examine the relevance of the new AHA/ADA treatment guidelines to dyslipidemic individuals.Recent FindingsIn this review, we provide an update on the pathophysiology of diabetic dyslipidemia, including the role of several apolipoproteins such as apoC-III. We also point to new studies and new agents for the treatment of individuals with type 2 diabetes mellitus who need lipid therapies.SummaryType 2 diabetes mellitus causes cardiovascular disease via several pathways, including dyslipidemia characterized by increased plasma levels of apoB-lipoproteins and triglycerides, and low plasma concentrations of HDL cholesterol. Treatments to normalize the dyslipidemia and reduce the risk for cardiovascular events include the following: lifestyle and medication, particularly statins, and if necessary, ezetimibe, to significantly lower LDL cholesterol. Other treatments, more focused on triglycerides and HDL cholesterol, are less well supported by randomized clinical trials and should be used on an individual basis. Newer agents, particularly the PCSK9 inhibitors, show a great promise for even greater lowering of LDL cholesterol, but we await the results of ongoing clinical trials.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2016

Cholesteryl Ester Transfer Protein Inhibition With Anacetrapib Decreases Fractional Clearance Rates of High-Density Lipoprotein Apolipoprotein A-I and Plasma Cholesteryl Ester Transfer Protein

Gissette Reyes-Soffer; John S. Millar; Colleen Ngai; Patricia Jumes; Ellie Coromilas; Bela F. Asztalos; Amy O. Johnson-Levonas; John A. Wagner; Daniel S. Donovan; Wahida Karmally; Rajasekhar Ramakrishnan; Stephen Holleran; Tiffany Thomas; Richard L. Dunbar; Emil M. deGoma; Hashmi Rafeek; Amanda Baer; Yang Liu; David E. Gutstein; Daniel J. Rader; Henry N. Ginsberg

Objective—Anacetrapib (ANA), an inhibitor of cholesteryl ester transfer protein (CETP) activity, increases plasma concentrations of high-density lipoprotein cholesterol (HDL-C), apolipoprotein A-I (apoA)-I, apoA-II, and CETP. The mechanisms responsible for these treatment-related increases in apolipoproteins and plasma CETP are unknown. We performed a randomized, placebo (PBO)-controlled, double-blind, fixed-sequence study to examine the effects of ANA on the metabolism of HDL apoA-I and apoA-II and plasma CETP. Approach and Results—Twenty-nine participants received atorvastatin (ATV) 20 mg/d plus PBO for 4 weeks, followed by ATV plus ANA 100 mg/d for 8 weeks (ATV-ANA). Ten participants received double PBO for 4 weeks followed by PBO plus ANA for 8 weeks (PBO-ANA). At the end of each treatment, we examined the kinetics of HDL apoA-I, HDL apoA-II, and plasma CETP after D3-leucine administration as well as 2D gel analysis of HDL subspecies. In the combined ATV-ANA and PBO-ANA groups, ANA treatment increased plasma HDL-C (63.0%; P<0.001) and apoA-I levels (29.5%; P<0.001). These increases were associated with reductions in HDL apoA-I fractional clearance rate (18.2%; P=0.002) without changes in production rate. Although the apoA-II levels increased by 12.6% (P<0.001), we could not discern significant changes in either apoA-II fractional clearance rate or production rate. CETP levels increased 102% (P<0.001) on ANA because of a significant reduction in the fractional clearance rate of CETP (57.6%, P<0.001) with no change in CETP production rate. Conclusions—ANA treatment increases HDL apoA-I and CETP levels by decreasing the fractional clearance rate of each protein.

Collaboration


Dive into the Gissette Reyes-Soffer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Rader

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John S. Millar

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

John A. Wagner

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge