Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giulia Bonacucina is active.

Publication


Featured researches published by Giulia Bonacucina.


Journal of Pharmaceutical Sciences | 2009

Colloidal soft matter as drug delivery system

Giulia Bonacucina; Marco Cespi; Monica Misici-Falzi; Giovanni Filippo Palmieri

Growing interest is being dedicated to soft matter because of its potential in delivering any type of drugs. Since hydrophilic, lipophilic, small and big molecules can be loaded into these colloidal systems and administered through the parenteral or nonparenteral route, soft matter systems have been used to solve many biomedical and pharmaceutical problems. In fact, they make possible to overcome difficulties in the formulation and delivery of poorly water-soluble drug molecules, settle some stability issues typical of biological drug molecules, design parenteral sustained release forms and provide functionalized soft particles that are very effective in drug targeting. This review deals with the important role that colloids play in the drug delivery and targeting, with particular attention to the more currently used systems such as microemulsions, organogels, liposomes, micelles, and dendrimers. Though significant progress has been made in drug targeting, some challenges still remain. Further efforts will be required to better understand the characteristics of targets and to discover new ones. In-depth knowledge of the physico-chemical structure and properties of the systems used for targeting is fundamental for understanding the mechanism of interaction with the biological substrate and the consequent drug release.


Drug Development and Industrial Pharmacy | 2001

Spray-Drying as a Method for Microparticulate Controlled Release Systems Preparation: Advantages and Limits. I. Water-Soluble Drugs

Giovanni Filippo Palmieri; Giulia Bonacucina; Piera Di Martino; Sante Martelli

Spray-drying was used for the preparation of paracetamol/eudragit RS or RL or ethylcellulose microspheres to verify the possibility of their use in controlled-release solid-dosage forms formulation and try to determine advantages and limits of the technique of such use. Microspheres were first characterized by scanning electron microscopy, differential scanning calorimetry, x-ray diffractometry, and in vitro dissolution studies and then used for the preparation of tablets. During this step, the compressibility of the spray-dried powders was also evaluated. In vitro dissolution studies were performed also on the tablets and their release control was accessed. Although powders were unable to slow down drug release, tablets obtained from microsphere compression showed a good capability of controlling paracetamol release when eudragit RS or ethylcellulose was used, even at low polymer amounts.


Journal of Microencapsulation | 2002

Gastro-resistant microspheres containing ketoprofen

Giovanni Filippo Palmieri; Giulia Bonacucina; P. Di Martino; Sante Martelli

Ketoprofen gastroresistant microspheres were prepared by spray-drying using common pH dependent polymers, such as Eudragit S and L, CAP, CAT and HPMCP. The long ketoprofen recrystallization time was a serious hindrance to the preparation of microspheres having a drug content higher than 35%. Microspheres were characterized by scanning electron microscopy, differential scanning calorimetry, X-ray diffractometry and in vitro dissolution studies, and used for the preparation of tablets. During this step, the compaction ability of the spray-dried powders was measured. While the compressibility of the microspheres containing the enteric cellulosic derivatives are not acceptable and different from those of the microcrystalline cellulose, the compaction properties of ketoprofen/Eudragit L or S microspheres are comparable to those of the Avicel PH 101. In vitro dissolution studies were performed on the microspheres and the tablets. All microspheres showed a good gastroresistance, but some differences among the five polymers in reducing drug release at low pH values are present. Acrylic polymers (Eudragit L or S) are considerably more effective than the cellulosic derivatives CAP and CAT, while the HPMCP profile is in an intermediate position. These differences are erased by the microspheres compression process. In HCl 0.1 N, the percentage of ketoprofen released from the tablets is always close to zero, independently from the polymer used.


Journal of Microencapsulation | 2000

Tabletted polylactide microspheres prepared by a w/o emulsion-spray drying method.

Paolo Giunchedi; Elisabetta Gavini; Giulia Bonacucina; Giovanni Filippo Palmieri

An emulsification-spray drying technique is used to prepare poly(D, L-lactic acid) (PDLLA) microparticles loaded with a water soluble, non-steroidal antiinflammatory drug (NSAID), sodium naproxen (NaNPX). The method involves the preparation of a w/o emulsion in which the water soluble drug is dissolved in the aqueous dispersed phase, while the polymer is dissolved in the organic continuous phase. As a comparison, microparticles were prepared by spraying a suspension of the drug into an organic solution of the polymer. The spray-dried particles were characterized using SEM, DSC, XRD and in vitro release tests. The spray-dried product was then compressed (direct compression) to obtain controlled release matrix tablets. All microparticles release NaNPX within 30min. The matrix tablets release the drug in 8-10h; the matrix tablets characterized by the presence of surfactant (due to the emulsion used to obtain the microparticles) have the highest release rate.An emulsification-spray drying technique is used to prepare poly(D,L-lactic acid) (PDLLA) microparticles loaded with a water soluble, non-steroidal anti-inflammatory drug (NSAID), sodium naproxen (NaNPX). The method involves the preparation of a w/o emulsion in which the water soluble drug is dissolved in the aqueous dispersed phase, while the polymer is dissolved in the organic continuous phase. As a comparison, microparticles were prepared by spraying a suspension of the drug into an organic solution of the polymer. The spray-dried particles were characterized using SEM, DSC, XRD and in vitro release tests. The spray-dried product was then compressed (direct compression) to obtain controlled release matrix tablets. All microparticles release NaNPX within 30 min. The matrix tablets release the drug in 8-10 h; the matrix tablets characterized by the presence of surfactant (due to the emulsion used to obtain the microparticles) have the highest release rate.


International Journal of Pharmaceutics | 2002

Microencapsulation of semisolid ketoprofen/polymer microspheres

Giovanni Filippo Palmieri; Giulia Bonacucina; Piera Di Martino; Sante Martelli

Ketoprofen controlled release microspheres were prepared, by emulsion/solvent evaporation, at 15 degrees C, in order to avoid the formation of semisolid particles. An identical procedure was carried out at 60 degrees C to speed up the solvent evaporation and the formed semisolid microspheres were directly microencapsulated by complex coacervation and spray-dried in order to recover them as free flowing powder. Microspheres and microcapsules were characterized by scanning electron microscopy, differential scanning calorimetry, X-ray diffractometry, in vitro dissolution studies, and then used for the preparation of tablets. During this step, the compressibility of the prepared powders was measured. Microspheres and microcapsules showed compaction abilities by far better than those of the corresponding physical mixtures. In fact, it was impossible to obtain tablets by direct compressing drug and polymer physical mixtures, but microspheres and microcapsules were easily transformed into tablets. Finally, in vitro dissolution studies were performed and the release control of the tablets was pointed out. Microspheres were able to control ketoprofen release only after their transformation into tablets. Tablets containing eudragit RS were the most effective in slowing down drug release.


Aaps Pharmscitech | 2009

Characterization and Stability of Emulsion Gels Based on Acrylamide/Sodium Acryloyldimethyl Taurate Copolymer

Giulia Bonacucina; Marco Cespi; Giovanni Filippo Palmieri

Sepineo P 600, a concentrated dispersion of acrylamide/sodium acryloyldimethyl taurate copolymer in isohexadecane, has self-gelling and thickening properties and the ability to emulsify oily phases, which make it easy to use in the formulation of gels and o/w emulsion gels. In this paper, gels were prepared using a Sepineo P 600 concentration between the 0.5% and 5% (w/w), and then emulsion gel was also prepared from the 3% Sepineo gel by adding a specific amount of almond oil. All the prepared systems were analyzed and characterized by oscillation rheology and acoustic spectroscopy. The particle size of the oil droplets and the microrheological extensional moduli (G′ and G″) of the systems were determined from acoustic parameters and used together with the classical oscillatory rheological tests to assess the stability of the systems. Classical oscillatory analysis revealed that the dynamic moduli were very dependent on polymer concentration; as this parameter increased, there was progressive improvement in the sample elasticity. In fact, the mechanical spectra of the 0.5% and 1% (w/w) Sepineo samples were characterized by strong frequency dependence and multiple crossover points, typical of dilute polymer solution with no organized structure. On the other hand, the 3–5% (w/w) concentration systems showed typical gel-like spectra, marked by the absence of crossover points between the dynamic moduli and by weak dependence on frequency. Nevertheless, the elastic properties of the gel-like structure even at elevated polymer concentrations were not strongly long-lasting, as demonstrated by the increase of the viscous contribution in the low frequency range during acoustic spectroscopy analysis. This fact could indicate that the gel structure is characterized by weak polymer–polymer interactions, an advantageous characteristic for topical administration, as the sample is thus easier to rub into the skin. Finally, both rheology and acoustic spectroscopy indicated that addition of the oily phase caused minimal changes to the elastic character of the gel. Thus, Sepineo P 600 gel and emulsion gel are very effective systems for use in topical and other types of applications.


International Journal of Pharmaceutics | 2013

Effect of temperature increase during the tableting of pharmaceutical materials

Marco Cespi; Giulia Bonacucina; Luca Casettari; Sara Ronchi; Giovanni Filippo Palmieri

Scale-up of tableting process is particularly difficult due to specific concerns related exclusively to the process itself and that cannot be determined on a smaller scale, which are the effect of compression speed and the build-up of heat due to the length of the compaction operations. In this work, it has been simulated the rise of temperature observed during the tablets manufacturing in a full production scale by means of an appropriate modification of a R&D rotary tablet machine. Four common pharmaceutical excipients, characterized by different chemical nature, consolidation behaviour and temperature sensitiveness have been analysed in terms of compaction mechanism (Heckel and energy analysis) and tabletability, in order to verify any effect of the increase of temperature. The results showed a relevance of the temperature on mechanical tablets properties only on materials characterized by low temperature thermal transitions (melting or glass transition), while, for compounds which do not exhibit thermal events at low temperature, it becomes less important for ductile materials and irrelevant for brittle materials. Heckel analysis highlighted a noticeable increase of ductility only in those materials whose tablets mechanical properties depended on the temperature. On the other hand, energy analysis showed low sensitivity failing to identify any temperature effect on compaction materials properties. This work showed how to simulate the process of temperature rise on a small scale and the influence of temperature on materials compaction properties. The use of a modified tableting machine, able to control the temperature and moisture levels and also capable of monitoring the punch movements, resulted in identifying the effect of temperature both on mechanical and compaction properties on materials. Thus, it represents a valuable tool in order to provide useful information at an early stage during the development of tablets formulations.


Carbohydrate Polymers | 2013

Characterization of the interaction between chitosan and inorganic sodium phosphates by means of rheological and optical microscopy studies

Luca Casettari; Marco Cespi; Giovanni Filippo Palmieri; Giulia Bonacucina

The physicochemical and rheological properties of chitosan and two different inorganic sodium phosphate dispersions (NaH(2)PO(4) and Na(3)PO(4)) were investigated in order to elucidate the role of different factors, such as ratios between polymer and sodium inorganic phosphates, different pHs and storage stability, on the gelling properties of chitosan. This was deemed opportune since physico-chemical characterizations of chitosan in the literature often appear incomplete and questionable. We also compared the elastic modulus values of the different chitosan/inorganic phosphate systems and examined their behaviour through optical microscopy analyses. The most efficient formulations that showed a thermogelling capacity with a significant gel transition behaviour after 24h were the NaH(2)PO(4)/chitosan and Na(3)PO(4)/chitosan systems at ratio 2 and pH 7.0. These results confirmed the importance of the pH value and ratio selection for the final systems.


International Journal of Food Microbiology | 2017

Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions

Campana Raffaella; Luca Casettari; Laura Fagioli; Marco Cespi; Giulia Bonacucina; Wally Baffone

Food safety is a fundamental concern for both consumers and the food industry, especially as the numbers of reported cases of food-associated infections continue to increase. Industrial surfaces can provide a suitable substrate for the development and persistence of bacterial organized in biofilms that represent a potential source of food contamination. The negative consumer perception of chemical disinfectants has shifted the attention to natural substances, such as plant extracts. The aim of this study was to investigate the possibility of using the essential oils (EOs) in the fight against S. aureus biofilms. First, the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Biofilm Inhibitory Concentration (MBIC), Minimum Biofilm Eradication Concentration (MBEC) of eleven EOs against S. aureus were determined. Cinnamomum cassia and Salvia officinalis EOs showed the greatest antibacterial properties with 1.25% MIC and MBC, 1.25% MBIC and 2.5% MBEC respectively. Gas Chromatography/Mass Spectrometry analysis revealed cinnamaldehyde (82.66%) and methoxy cinnamaldehyde (10.12%) as the most abundant substances of C. cassia, while cis-thujone (23.90%), camphor (19.22%) and 1.8-cineole (10.62%) of S. officinalis. Three different microemulsions, formulated with C. cassia, S. officinalis or both, were finally tested against S. aureus biofilms in different culture media and growth conditions, causing a >3 logarithmic reductions in S. aureus 24h-old biofilms and desiccated biofilms, and up to 68% of biofilm removal after 90min of exposure. The obtained data suggest the potential use of EOs, alone or in combination, for the formulation of sanitizers as alternative or in support in the disinfection of contaminated surfaces.


Molecular Pharmaceutics | 2015

Oleanolic Acid Loaded PEGylated PLA and PLGA Nanoparticles with Enhanced Cytotoxic Activity against Cancer Cells.

Dede K. W. Man; Luca Casettari; Marco Cespi; Giulia Bonacucina; Giovanni Filippo Palmieri; Stephen Cho Wing Sze; George Pak-Heng Leung; Jenny K.W. Lam; Philip Chi Lip Kwok

Oleanolic acid (OA) is a natural triterpenoid with anticancer properties, but its hydrophobic nature and poor aqueous solubility pose challenges in pharmaceutical formulation development. The present study aimed at developing OA-loaded mPEG-PLGA or mPEG-PLA nanoparticles (NPs) to improve the delivery of OA. The NPs were prepared by nanoprecipitation, and their physicochemical properties were characterized. The OA encapsulation efficiency of the NPs was between 40 and 75%. The size of the OA-loaded NPs was around 200-250 nm, which fell within the range required for tumor targeting by means of the enhanced permeability and retention (EPR) effect, and the negatively charged NPs remained physically stable for over 20 weeks with no aggregation observed. The OA-loaded NPs produced significant cytotoxic effects through apoptosis in cancer cell lines. Overall, the OA-loaded mPEG-PLGA NPs and mPEG-PLA NPs shared similar physicochemical properties. The former, especially the OA-loaded mPEG-P(D,L)LGA NPs, were more cytotoxic to cancer cells and therefore were more efficient for OA delivery.

Collaboration


Dive into the Giulia Bonacucina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Cespi

University of Camerino

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberta Ganzetti

Nuclear Regulatory Commission

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge