Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giulia Fabbri is active.

Publication


Featured researches published by Giulia Fabbri.


Nature Genetics | 2011

Analysis of the coding genome of diffuse large B-cell lymphoma

Laura Pasqualucci; Vladimir Trifonov; Giulia Fabbri; Jing Ma; Davide Rossi; Annalisa Chiarenza; Victoria A. Wells; Adina Grunn; Monica Messina; Oliver Elliot; Joseph Chan; Govind Bhagat; Amy Chadburn; Gianluca Gaidano; Charles G. Mullighan; Raul Rabadan; Riccardo Dalla-Favera

Diffuse large B-cell lymphoma (DLBCL) is the most common form of human lymphoma. Although a number of structural alterations have been associated with the pathogenesis of this malignancy, the full spectrum of genetic lesions that are present in the DLBCL genome, and therefore the identity of dysregulated cellular pathways, remains unknown. By combining next-generation sequencing and copy number analysis, we show that the DLBCL coding genome contains, on average, more than 30 clonally represented gene alterations per case. This analysis also revealed mutations in genes not previously implicated in DLBCL pathogenesis, including those regulating chromatin methylation (MLL2; 24% of samples) and immune recognition by T cells. These results provide initial data on the complexity of the DLBCL coding genome and identify novel dysregulated pathways underlying its pathogenesis.


Nature | 2011

Inactivating mutations of acetyltransferase genes in B-cell lymphoma.

Laura Pasqualucci; David Dominguez-Sola; Annalisa Chiarenza; Giulia Fabbri; Adina Grunn; Vladimir Trifonov; Lawryn H. Kasper; Stephanie Lerach; Hongyan Tang; Jing Ma; Davide Rossi; Amy Chadburn; Vundavalli V. Murty; Charles G. Mullighan; Gianluca Gaidano; Raul Rabadan; Paul K. Brindle; Riccardo Dalla-Favera

B-cell non-Hodgkin’s lymphoma comprises biologically and clinically distinct diseases the pathogenesis of which is associated with genetic lesions affecting oncogenes and tumour-suppressor genes. We report here that the two most common types—follicular lymphoma and diffuse large B-cell lymphoma—harbour frequent structural alterations inactivating CREBBP and, more rarely, EP300, two highly related histone and non-histone acetyltransferases (HATs) that act as transcriptional co-activators in multiple signalling pathways. Overall, about 39% of diffuse large B-cell lymphoma and 41% of follicular lymphoma cases display genomic deletions and/or somatic mutations that remove or inactivate the HAT coding domain of these two genes. These lesions usually affect one allele, suggesting that reduction in HAT dosage is important for lymphomagenesis. We demonstrate specific defects in acetylation-mediated inactivation of the BCL6 oncoprotein and activation of the p53 tumour suppressor. These results identify CREBBP/EP300 mutations as a major pathogenetic mechanism shared by common forms of B-cell non-Hodgkin’s lymphoma, with direct implications for the use of drugs targeting acetylation/deacetylation mechanisms.


Journal of Experimental Medicine | 2011

Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation

Giulia Fabbri; Silvia Rasi; Davide Rossi; Vladimir Trifonov; Hossein Khiabanian; Jing Ma; Adina Grunn; Marco Fangazio; Daniela Capello; Sara Monti; Stefania Cresta; Ernesto Gargiulo; Francesco Forconi; Anna Guarini; Luca Arcaini; Marco Paulli; Luca Laurenti; Luigi Maria Larocca; Roberto Marasca; Valter Gattei; David Oscier; Francesco Bertoni; Charles G. Mullighan; Robin Foà; Laura Pasqualucci; Raul Rabadan; Riccardo Dalla-Favera; Gianluca Gaidano

Next generation sequencing and copy number analysis provide insights into the complexity of the CLL coding genome, and reveal an association between NOTCH1 mutational activation and poor prognosis.


Blood | 2012

Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia.

Davide Rossi; Silvia Rasi; Giulia Fabbri; Valeria Spina; Marco Fangazio; Francesco Forconi; Roberto Marasca; Luca Laurenti; Alessio Bruscaggin; Michaela Cerri; Sara Monti; Stefania Cresta; Rosella Famà; Lorenzo De Paoli; Pietro Bulian; Valter Gattei; Anna Guarini; Silvia Deaglio; Daniela Capello; Raul Rabadan; Laura Pasqualucci; Riccardo Dalla-Favera; Robin Foà; Gianluca Gaidano

Analysis of the chronic lymphocytic leukemia (CLL) coding genome has recently disclosed that the NOTCH1 proto-oncogene is recurrently mutated at CLL presentation. Here, we assessed the prognostic role of NOTCH1 mutations in CLL. Two series of newly diagnosed CLL were used as training (n = 309) and validation (n = 230) cohorts. NOTCH1 mutations occurred in 11.0% and 11.3% CLL of the training and validation series, respectively. In the training series, NOTCH1 mutations led to a 3.77-fold increase in the hazard of death and to shorter overall survival (OS; P < .001). Multivariate analysis selected NOTCH1 mutations as an independent predictor of OS after controlling for confounding clinical and biologic variables. The independent prognostic value of NOTCH1 mutations was externally confirmed in the validation series. The poor prognosis conferred by NOTCH1 mutations was attributable, at least in part, to shorter treatment-free survival and higher risk of Richter transformation. Although NOTCH1 mutated patients were devoid of TP53 disruption in more than 90% cases in both training and validation series, the OS predicted by NOTCH1 mutations was similar to that of TP53 mutated/deleted CLL. NOTCH1 mutations are an independent predictor of CLL OS, tend to be mutually exclusive with TP53 abnormalities, and identify cases with a dismal prognosis.


Journal of Experimental Medicine | 2012

The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development

Davide Rossi; Vladimir Trifonov; Marco Fangazio; Alessio Bruscaggin; Silvia Rasi; Valeria Spina; Sara Monti; Tiziana Vaisitti; Francesca Arruga; Rosella Famà; Carmela Ciardullo; Mariangela Greco; Stefania Cresta; Daniela Piranda; Antony B. Holmes; Giulia Fabbri; Monica Messina; Andrea Rinaldi; Jiguang Wang; Claudio Agostinelli; Pier Paolo Piccaluga; Marco Lucioni; Fabrizio Tabbò; Roberto Serra; Silvia Franceschetti; Clara Deambrogi; Giulia Daniele; Valter Gattei; Roberto Marasca; Fabio Facchetti

Notch2 mutations represent the most frequent lesion in splenic marginal zone lymphoma.


Blood | 2012

Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia

Davide Rossi; Marco Fangazio; Silvia Rasi; Tiziana Vaisitti; Sara Monti; Stefania Cresta; Sabina Chiaretti; Ilaria Del Giudice; Giulia Fabbri; Alessio Bruscaggin; Valeria Spina; Clara Deambrogi; Marilisa Marinelli; Rosella Famà; Mariangela Greco; Giulia Daniele; Francesco Forconi; Valter Gattei; Francesco Bertoni; Silvia Deaglio; Laura Pasqualucci; Anna Guarini; Riccardo Dalla-Favera; Robin Foà; Gianluca Gaidano

The genetic lesions identified to date do not fully recapitulate the molecular pathogenesis of chronic lymphocytic leukemia (CLL) and do not entirely explain the development of severe complications such as chemorefractoriness. In the present study, BIRC3, a negative regulator of noncanonical NF-κB signaling, was investigated in different CLL clinical phases. BIRC3 lesions were absent in monoclonal B-cell lymphocytosis (0 of 63) and were rare in CLL at diagnosis (13 of 306, 4%). Conversely, BIRC3 disruption selectively affected 12 of 49 (24%) fludarabine-refractory CLL cases by inactivating mutations and/or gene deletions that distributed in a mutually exclusive fashion with TP53 abnormalities. In contrast to fludarabine-refractory CLL, progressive but fludarabine-sensitive patients were consistently devoid of BIRC3 abnormalities, suggesting that BIRC3 genetic lesions associate specifically with a chemorefractory phenotype. By actuarial analysis in newly diagnosed CLL (n = 306), BIRC3 disruption identified patients with a poor outcome similar to that associated with TP53 abnormalities and exerted a prognostic role that was independent of widely accepted clinical and genetic risk factors. Consistent with the role of BIRC3 as a negative regulator of NF-κB, biochemical studies revealed the presence of constitutive noncanonical NF-κB activation in fludarabine-refractory CLL patients harboring molecular lesions of BIRC3. These data identify BIRC3 disruption as a recurrent genetic lesion of high-risk CLL devoid of TP53 abnormalities.


Journal of Experimental Medicine | 2013

Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome

Giulia Fabbri; Hossein Khiabanian; Antony B. Holmes; Jiguang Wang; Monica Messina; Charles G. Mullighan; Laura Pasqualucci; Raul Rabadan; Riccardo Dalla-Favera

Characterization of the pattern of clonal evolution from CLL to RS, the genetic determinants of CLL transformation to RS, and the pathogenetic relationship between RS and classical non–CLL-associated de novo DLBCL.


Nature Reviews Cancer | 2016

The molecular pathogenesis of chronic lymphocytic leukaemia

Giulia Fabbri; Riccardo Dalla-Favera

Recent investigations have provided an increasingly complete picture of the genetic landscape of chronic lymphocytic leukaemia (CLL). These analyses revealed that the CLL genome displays a high degree of heterogeneity between patients and within the same patient. In addition, they highlighted molecular mechanisms and functionally relevant biological programmes that may be important for the pathogenesis and therapeutic targeting of this disease. This Review focuses on recent insights into the understanding of CLL biology, with emphasis on the role of genetic lesions in the initiation and clinical progression of CLL. We also consider the translation of these findings into the development of risk-adapted and targeted therapeutic approaches.


Blood | 2014

Genetic lesions associated with chronic lymphocytic leukemia chemo-refractoriness.

Monica Messina; Ilaria Del Giudice; Hossein Khiabanian; Davide Rossi; Sabina Chiaretti; Silvia Rasi; Valeria Spina; Antony B. Holmes; Marilisa Marinelli; Giulia Fabbri; Alfonso Piciocchi; Francesca Romana Mauro; Anna Guarini; Gianluca Gaidano; Riccardo Dalla-Favera; Laura Pasqualucci; Raul Rabadan; Robin Foà

Fludarabine refractoriness (FR) represents an unsolved clinical problem of chronic lymphocytic leukemia (CLL) management. Although next-generation sequencing studies have led to the identification of a number of genes frequently mutated in FR-CLL, a comprehensive evaluation of the FR-CLL genome has not been reported. Toward this end, we studied 10 FR-CLLs by combining whole-exome sequencing and copy number aberration (CNA) analysis, which showed an average of 16.3 somatic mutations and 4 CNAs per sample. Screening of recurrently mutated genes in 48 additional FR-CLLs revealed that ~70% of FR-CLLs carry ≥1 mutation in genes previously associated with CLL clinical course, including TP53 (27.5%), NOTCH1 (24.1%), SF3B1 (18.9%), and BIRC3 (15.5%). In addition, this analysis showed that 10.3% of FR-CLL cases display mutations of the FAT1 gene, which encodes for a cadherin-like protein that negatively regulates Wnt signaling, consistent with a tumor suppressor role. The frequency of FAT1-mutated cases was significantly higher in FR-CLL than in unselected CLLs at diagnosis (10.3% vs 1.1%, P = .004), suggesting a role in the development of a high-risk phenotype. These findings have general implications for the mechanisms leading to FR and point to Wnt signaling as a potential therapeutic target in FR-CLL.


eLife | 2014

Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia

Jiguang Wang; Hossein Khiabanian; Davide Rossi; Giulia Fabbri; Valter Gattei; Francesco Forconi; Luca Laurenti; Roberto Marasca; Giovanni Del Poeta; Robin Foà; Laura Pasqualucci; Gianluca Gaidano; Raul Rabadan

Cancer is a clonal evolutionary process, caused by successive accumulation of genetic alterations providing milestones of tumor initiation, progression, dissemination, and/or resistance to certain therapeutic regimes. To unravel these milestones we propose a framework, tumor evolutionary directed graphs (TEDG), which is able to characterize the history of genetic alterations by integrating longitudinal and cross-sectional genomic data. We applied TEDG to a chronic lymphocytic leukemia (CLL) cohort of 70 patients spanning 12 years and show that: (a) the evolution of CLL follows a time-ordered process represented as a global flow in TEDG that proceeds from initiating events to late events; (b) there are two distinct and mutually exclusive evolutionary paths of CLL evolution; (c) higher fitness clones are present in later stages of the disease, indicating a progressive clonal replacement with more aggressive clones. Our results suggest that TEDG may constitute an effective framework to recapitulate the evolutionary history of tumors. DOI: http://dx.doi.org/10.7554/eLife.02869.001

Collaboration


Dive into the Giulia Fabbri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Davide Rossi

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Gianluca Gaidano

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Rasi

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Guarini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Marco Fangazio

University of Eastern Piedmont

View shared research outputs
Researchain Logo
Decentralizing Knowledge