Vladimir Trifonov
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vladimir Trifonov.
The New England Journal of Medicine | 2011
Enrico Tiacci; Vladimir Trifonov; Gianluca Schiavoni; Antony B. Holmes; Wolfgang Kern; Maria Paola Martelli; Alessandra Pucciarini; Barbara Bigerna; Roberta Pacini; Victoria A. Wells; Paolo Sportoletti; Valentina Pettirossi; Roberta Mannucci; Oliver Elliott; Arcangelo Liso; Achille Ambrosetti; Alessandro Pulsoni; Francesco Forconi; Livio Trentin; Gianpietro Semenzato; Giorgio Inghirami; Monia Capponi; Francesco Di Raimondo; Caterina Patti; Luca Arcaini; Pellegrino Musto; Stefano Pileri; Claudia Haferlach; Susanne Schnittger; Giovanni Pizzolo
BACKGROUND Hairy-cell leukemia (HCL) is a well-defined clinicopathological entity whose underlying genetic lesion is still obscure. METHODS We searched for HCL-associated mutations by performing massively parallel sequencing of the whole exome of leukemic and matched normal cells purified from the peripheral blood of an index patient with HCL. Findings were validated by Sanger sequencing in 47 additional patients with HCL. RESULTS Whole-exome sequencing identified five missense somatic clonal mutations that were confirmed on Sanger sequencing, including a heterozygous mutation in BRAF that results in the BRAF V600E variant protein. Since BRAF V600E is oncogenic in other tumors, further analyses were focused on this genetic lesion. The same BRAF mutation was noted in all the other 47 patients with HCL who were evaluated by means of Sanger sequencing. None of the 195 patients with other peripheral B-cell lymphomas or leukemias who were evaluated carried the BRAF V600E variant, including 38 patients with splenic marginal-zone lymphomas or unclassifiable splenic lymphomas or leukemias. In immunohistologic and Western blot studies, HCL cells expressed phosphorylated MEK and ERK (the downstream targets of the BRAF kinase), indicating a constitutive activation of the RAF-MEK-ERK mitogen-activated protein kinase pathway in HCL. In vitro incubation of BRAF-mutated primary leukemic hairy cells from 5 patients with PLX-4720, a specific inhibitor of active BRAF, led to a marked decrease in phosphorylated ERK and MEK. CONCLUSIONS; The BRAF V600E mutation was present in all patients with HCL who were evaluated. This finding may have implications for the pathogenesis, diagnosis, and targeted therapy of HCL. (Funded by Associazione Italiana per la Ricerca sul Cancro and others.).
Nature Genetics | 2011
Laura Pasqualucci; Vladimir Trifonov; Giulia Fabbri; Jing Ma; Davide Rossi; Annalisa Chiarenza; Victoria A. Wells; Adina Grunn; Monica Messina; Oliver Elliot; Joseph Chan; Govind Bhagat; Amy Chadburn; Gianluca Gaidano; Charles G. Mullighan; Raul Rabadan; Riccardo Dalla-Favera
Diffuse large B-cell lymphoma (DLBCL) is the most common form of human lymphoma. Although a number of structural alterations have been associated with the pathogenesis of this malignancy, the full spectrum of genetic lesions that are present in the DLBCL genome, and therefore the identity of dysregulated cellular pathways, remains unknown. By combining next-generation sequencing and copy number analysis, we show that the DLBCL coding genome contains, on average, more than 30 clonally represented gene alterations per case. This analysis also revealed mutations in genes not previously implicated in DLBCL pathogenesis, including those regulating chromatin methylation (MLL2; 24% of samples) and immune recognition by T cells. These results provide initial data on the complexity of the DLBCL coding genome and identify novel dysregulated pathways underlying its pathogenesis.
Nature | 2011
Laura Pasqualucci; David Dominguez-Sola; Annalisa Chiarenza; Giulia Fabbri; Adina Grunn; Vladimir Trifonov; Lawryn H. Kasper; Stephanie Lerach; Hongyan Tang; Jing Ma; Davide Rossi; Amy Chadburn; Vundavalli V. Murty; Charles G. Mullighan; Gianluca Gaidano; Raul Rabadan; Paul K. Brindle; Riccardo Dalla-Favera
B-cell non-Hodgkin’s lymphoma comprises biologically and clinically distinct diseases the pathogenesis of which is associated with genetic lesions affecting oncogenes and tumour-suppressor genes. We report here that the two most common types—follicular lymphoma and diffuse large B-cell lymphoma—harbour frequent structural alterations inactivating CREBBP and, more rarely, EP300, two highly related histone and non-histone acetyltransferases (HATs) that act as transcriptional co-activators in multiple signalling pathways. Overall, about 39% of diffuse large B-cell lymphoma and 41% of follicular lymphoma cases display genomic deletions and/or somatic mutations that remove or inactivate the HAT coding domain of these two genes. These lesions usually affect one allele, suggesting that reduction in HAT dosage is important for lymphomagenesis. We demonstrate specific defects in acetylation-mediated inactivation of the BCL6 oncoprotein and activation of the p53 tumour suppressor. These results identify CREBBP/EP300 mutations as a major pathogenetic mechanism shared by common forms of B-cell non-Hodgkin’s lymphoma, with direct implications for the use of drugs targeting acetylation/deacetylation mechanisms.
Journal of Experimental Medicine | 2011
Giulia Fabbri; Silvia Rasi; Davide Rossi; Vladimir Trifonov; Hossein Khiabanian; Jing Ma; Adina Grunn; Marco Fangazio; Daniela Capello; Sara Monti; Stefania Cresta; Ernesto Gargiulo; Francesco Forconi; Anna Guarini; Luca Arcaini; Marco Paulli; Luca Laurenti; Luigi Maria Larocca; Roberto Marasca; Valter Gattei; David Oscier; Francesco Bertoni; Charles G. Mullighan; Robin Foà; Laura Pasqualucci; Raul Rabadan; Riccardo Dalla-Favera; Gianluca Gaidano
Next generation sequencing and copy number analysis provide insights into the complexity of the CLL coding genome, and reveal an association between NOTCH1 mutational activation and poor prognosis.
The New England Journal of Medicine | 2009
Vladimir Trifonov; Hossein Khiabanian; Raul Rabadan
Segments of the 2009 human H1N1 strains have coexisted in swine influenza virus strains for more than 10 years. Vladimir Trifonov, Hossein Khiabanian, and Raul Rabadan describe the evolution of the H1N1 virus.
Nature Genetics | 2013
Veronique Frattini; Vladimir Trifonov; Joseph Chan; Angelica Castano; Marie Lia; Francesco Abate; Stephen T. Keir; Alan X. Ji; Pietro Zoppoli; Francesco Niola; Carla Danussi; Igor Dolgalev; Paola Porrati; Serena Pellegatta; Adriana Heguy; Gaurav Gupta; David Pisapia; Peter Canoll; Jeffrey N. Bruce; Roger E. McLendon; Hai Yan; Kenneth D. Aldape; Gaetano Finocchiaro; Tom Mikkelsen; Gilbert G. Privé; Darell D. Bigner; Anna Lasorella; Raul Rabadan; Antonio Iavarone
Glioblastoma is one of the most challenging forms of cancer to treat. Here we describe a computational platform that integrates the analysis of copy number variations and somatic mutations and unravels the landscape of in-frame gene fusions in glioblastoma. We found mutations with loss of heterozygosity in LZTR1, encoding an adaptor of CUL3-containing E3 ligase complexes. Mutations and deletions disrupt LZTR1 function, which restrains the self renewal and growth of glioma spheres that retain stem cell features. Loss-of-function mutations in CTNND2 target a neural-specific gene and are associated with the transformation of glioma cells along the very aggressive mesenchymal phenotype. We also report recurrent translocations that fuse the coding sequence of EGFR to several partners, with EGFR-SEPT14 being the most frequent functional gene fusion in human glioblastoma. EGFR-SEPT14 fusions activate STAT3 signaling and confer mitogen independence and sensitivity to EGFR inhibition. These results provide insights into the pathogenesis of glioblastoma and highlight new targets for therapeutic intervention.
Journal of Experimental Medicine | 2012
Davide Rossi; Vladimir Trifonov; Marco Fangazio; Alessio Bruscaggin; Silvia Rasi; Valeria Spina; Sara Monti; Tiziana Vaisitti; Francesca Arruga; Rosella Famà; Carmela Ciardullo; Mariangela Greco; Stefania Cresta; Daniela Piranda; Antony B. Holmes; Giulia Fabbri; Monica Messina; Andrea Rinaldi; Jiguang Wang; Claudio Agostinelli; Pier Paolo Piccaluga; Marco Lucioni; Fabrizio Tabbò; Roberto Serra; Silvia Franceschetti; Clara Deambrogi; Giulia Daniele; Valter Gattei; Roberto Marasca; Fabio Facchetti
Notch2 mutations represent the most frequent lesion in splenic marginal zone lymphoma.
PLOS ONE | 2010
Gustavo Palacios; Marie Løvoll; Torstein Tengs; Mady Hornig; Stephen K. Hutchison; Jeffrey Hui; Ruth-Torill Kongtorp; Nazir Savji; Ana Valeria Bussetti; Alexander Solovyov; Anja B. Kristoffersen; Christopher Celone; Craig Street; Vladimir Trifonov; David L. Hirschberg; Raul Rabadan; Michael Egholm; Espen Rimstad; W. Ian Lipkin
Atlantic salmon (Salmo salar L.) mariculture has been associated with epidemics of infectious diseases that threaten not only local production, but also wild fish coming into close proximity to marine pens and fish escaping from them. Heart and skeletal muscle inflammation (HSMI) is a frequently fatal disease of farmed Atlantic salmon. First recognized in one farm in Norway in 1999[1], HSMI was subsequently implicated in outbreaks in other farms in Norway and the United Kingdom[2]. Although pathology and disease transmission studies indicated an infectious basis, efforts to identify an agent were unsuccessful. Here we provide evidence that HSMI is associated with infection with piscine reovirus (PRV). PRV is a novel reovirus identified by unbiased high throughput DNA sequencing and a bioinformatics program focused on nucleotide frequency as well as sequence alignment and motif analyses. Formal implication of PRV in HSMI will require isolation in cell culture and fulfillment of Kochs postulates, or prevention or modification of disease through use of specific drugs or vaccines. Nonetheless, as our data indicate that a causal relationship is plausible, measures must be taken to control PRV not only because it threatens domestic salmon production but also due to the potential for transmission to wild salmon populations.
Blood | 2011
Vera Grossmann; Enrico Tiacci; Antony B. Holmes; Alexander Kohlmann; Maria Paola Martelli; Wolfgang Kern; Ariele Spanhol-Rosseto; Hans-Ulrich Klein; Martin Dugas; Sonja Schindela; Vladimir Trifonov; Susanne Schnittger; Claudia Haferlach; Renato Bassan; Victoria A. Wells; Orietta Spinelli; Joseph Chan; Roberta Rossi; Stefano Baldoni; Luca De Carolis; Katharina Goetze; Hubert Serve; Rudolf Peceny; Karl-Anton Kreuzer; Daniel Oruzio; Giorgina Specchia; Francesco Di Raimondo; Francesco Fabbiano; Marco Sborgia; Arcangelo Liso
Among acute myeloid leukemia (AML) patients with a normal karyotype (CN-AML), NPM1 and CEBPA mutations define World Health Organization 2008 provisional entities accounting for approximately 60% of patients, but the remaining 40% are molecularly poorly characterized. Using whole-exome sequencing of one CN-AML patient lacking mutations in NPM1, CEBPA, FLT3-ITD, IDH1, and MLL-PTD, we newly identified a clonal somatic mutation in BCOR (BCL6 corepressor), a gene located on chromosome Xp11.4. Further analyses of 553 AML patients showed that BCOR mutations occurred in 3.8% of unselected CN-AML patients and represented a substantial fraction (17.1%) of CN-AML patients showing the same genotype as the AML index patient subjected to whole-exome sequencing. BCOR somatic mutations were: (1) disruptive events similar to the germline BCOR mutations causing the oculo-facio-cardio-dental genetic syndrome; (2) associated with decreased BCOR mRNA levels, absence of full-length BCOR, and absent or low expression of a truncated BCOR protein; (3) virtually mutually exclusive with NPM1 mutations; and (4) frequently associated with DNMT3A mutations, suggesting cooperativity among these genetic alterations. Finally, BCOR mutations tended to be associated with an inferior outcome in a cohort of 422 CN-AML patients (25.6% vs 56.7% overall survival at 2 years; P = .032). Our results for the first time implicate BCOR in CN-AML pathogenesis.
PLOS ONE | 2009
Hossein Khiabanian; Vladimir Trifonov; Raul Rabadan
Three human influenza pandemics occurred in the twentieth century, in 1918, 1957, and 1968. Influenza pandemic strains are the results of emerging viruses from non-human reservoirs to which humans have little or no immunity. At least two of these pandemic strains, in 1957 and in 1968, were the results of reassortments between human and avian viruses. Also, many cases of swine influenza viruses have reportedly infected humans, in particular, the recent H1N1 influenza virus of swine origin, isolated in Mexico and the United States. Pigs are documented to allow productive replication of human, avian, and swine influenza viruses. Thus it has been conjectured that pigs are the “mixing vessel” that create the avian-human reassortant strains, causing the human pandemics. Hence, studying the process and patterns of viral reassortment, especially in pigs, is a key to better understanding of human influenza pandemics. In the last few years, databases containing sequences of influenza A viruses, including swine viruses, collected since 1918 from diverse geographical locations, have been developed and made publicly available. In this paper, we study an ensemble of swine influenza viruses to analyze the reassortment phenomena through several statistical techniques. The reassortment patterns in swine viruses prove to be similar to the previous results found in human viruses, both in vitro and in vivo, that the surface glycoprotein coding segments reassort most often. Moreover, we find that one of the polymerase segments (PB1), reassorted in the strains responsible for the last two human pandemics, also reassorts frequently.