Giuliana Donadio
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giuliana Donadio.
Applied and Environmental Microbiology | 2011
Eugenio Notomista; Roberta Scognamiglio; Luca Troncone; Giuliana Donadio; Alessandro Pezzella; Alberto Di Donato; Viviana Izzo
ABSTRACT Biocatalysis is today a standard technology for the industrial production of several chemicals, and the number of biotransformation processes running on a commercial scale is constantly increasing. Among biocatalysts, bacterial multicomponent monooxygenases (BMMs), a diverse group of nonheme diiron enzymes that activate dioxygen, are of primary interest due to their ability to catalyze a variety of complex oxidations, including reactions of mono- and dihydroxylation of phenolic compounds. In recent years, both directed evolution and rational design have been successfully used to identify the molecular determinants responsible for BMM regioselectivity and to improve their activity toward natural and nonnatural substrates. Toluene o-xylene monooxygenase (ToMO) is a BMM isolated from Pseudomonas sp. strain OX1 which hydroxylates a wide spectrum of aromatic compounds. In this work we investigate the use of recombinant ToMO for the biosynthesis in recombinant cells of Escherichia coli strain JM109 of 4-hydroxyphenylethanol (tyrosol), an antioxidant present in olive oil, from 2-phenylethanol, a cheap and commercially available substrate. We initially found that wild-type ToMO is unable to convert 2-phenylethanol to tyrosol. This was explained by using a computational model which analyzed the interactions between ToMO active-site residues and the substrate. We found that residue F176 is the major steric hindrance for the correct positioning of the reaction intermediate leading to tyrosol production into the active site of the enzyme. Several mutants were designed and prepared, and we found that the combination of different mutations at position F176 with mutation E103G allows ToMO to convert up to 50% of 2-phenylethanol into tyrosol in 2 h.
Journal of Materials Chemistry B | 2016
Giuliana Donadio; Rita Di Martino; Rosario Oliva; Luigi Petraccone; Pompea Del Vecchio; Blanda Di Luccia; Ezio Ricca; Rachele Isticato; Alberto Di Donato; Eugenio Notomista
A novel metal ion-sensitive fluorescent peptidyl-probe has been designed based on the most common five-residue repeat in mammalian histidine rich glycoproteins (HRGs). A dansyl-amide moiety at the N-terminus and a tryptophan residue at the C-terminus of the peptide were added as they can act as a FRET (fluorescence resonance energy transfer) pair. The dansyl fluorophore was chosen also because it frequently shows strong CHEF (chelation enhanced fluorescence) and solvatochromic effects. The designed peptide, dansyl-HPHGHW-NH2 (dH3w), showed a selective fluorescence turn-on response to Zn2+ in aqueous solutions at pH 7.0 when excited at both 295 nm and 340 nm, thus indicating that both FRET and CHEF or solvatochromic effects are active in the metal/peptide complex. Steady-state fluorescence and isothermal titration calorimetry (ITC) measurements demonstrated that two peptide molecules bind to one zinc ion with an association constant Ka = 5.7 × 105 M-1 at 25 °C and pH 7.0. The fluorescence response to Zn2+ was not influenced by Pb2+, Cd2+, Mn2+, Fe2+, Fe3+, Mg2+, Ca2+, K+ and Na+ ions and only slightly influenced by Co2+ and Ni2+. Copper(ii), at concentrations as low as 5 μM, caused a strong quenching of both free and Zn2+ complexed dH3w. The determination of the binding parameters for Cu2+ has shown that one copper ion binds to one dH3w molecule with an association constant of 1.2 × 106 M-1 thus confirming the higher affinity of peptide for Cu2+ than for Zn2+. Finally, we demonstrated that dH3w can penetrate into HeLa cells and could thus be used for the determination of intracellular Zn2+ and Cu2+ concentrations.
Microbial Cell Factories | 2016
Giuliana Donadio; Mariamichela Lanzilli; Teja Sirec; Ezio Ricca; Rachele Isticato
BackgroundBacterial spores have been proposed as vehicles to display heterologous proteins for the development of mucosal vaccines, biocatalysts, bioremediation and diagnostic tools. Two approaches have been developed to display proteins on the spore surface: a recombinant approach, based on the construction of gene fusions between DNA molecules coding for a spore surface protein (carrier) and for the heterologous protein to be displayed (passenger); and a non-recombinant approach based on spore adsorption, a spontaneous interaction between negatively charged, hydrophobic spores and purified proteins. The molecular details of spore adsorption have not been fully clarified yet.ResultsWe used the monomeric Red Fluorescent Protein (mRFP) of the coral Discosoma sp. and Bacillus subtilis spores of a wild type and an isogenic mutant strain lacking the CotH protein to clarify the adsorption process. Mutant spores, characterized by a strongly altered coat, were more efficient than wild type spores in adsorbing mRFP but the interaction was less stable and mRFP could be in part released by raising the pH of the spore suspension. A collection of isogenic strains carrying GFP fused to proteins restricted in different compartments of the B. subtilis spore was used to localize adsorbed mRFP molecules. In wild type spores mRFP infiltrated through crust and outer coat, localized in the inner coat and was not surface exposed. In mutant spores mRFP was present in all surface layers, inner, outer coat and crust and was exposed on the spore surface.ConclusionsOur results indicate that different spores can be selected for different applications. Wild type spores are preferable when a very tight protein-spore interaction is needed, for example to develop reusable biocatalysts or bioremediation systems for field applications. cotH mutant spores are instead preferable when the heterologous protein has to be displayed on the spore surface or has to be released, as could be the case in mucosal delivery systems for antigens and drugs, respectively.
Frontiers in Microbiology | 2016
Mariamichela Lanzilli; Giuliana Donadio; Roberta Addevico; Anella Saggese; Giuseppina Cangiano; Loredana Baccigalupi; Graham Christie; Ezio Ricca; Rachele Isticato
Bacterial spores spontaneously interact and tightly bind heterologous proteins. A variety of antigens and enzymes have been efficiently displayed on spores of Bacillus subtilis, the model system for spore formers. Adsorption on B. subtilis spores has then been proposed as a non-recombinant approach for the development of mucosal vaccine/drug delivery vehicles, biocatalysts, bioremediation, and diagnostic tools. We used spores of B. megaterium QM B1551 to evaluate their efficiency as an adsorption platform. Spores of B. megaterium are significantly larger than those of B. subtilis and of other Bacillus species and are surrounded by the exosporium, an outermost surface layer present only in some Bacillus species and lacking in B. subtilis. Strain QM B1551 of B. megaterium and a derivative strain totally lacking the exosporium were used to localize the adsorbed monomeric Red Fluorescent Protein (mRFP) of the coral Discosoma sp., used as a model heterologous protein. Our results indicate that spores of B. megaterium adsorb mRFP more efficiently than B. subtilis spores, that the exosporium is essential for mRFP adsorption, and that most of the adsorbed mRFP molecules are not exposed on the spore surface but rather localized in the space between the outer coat and the exosporium.
PLOS ONE | 2015
Giuliana Donadio; Carmen Sarcinelli; Elio Pizzo; Eugenio Notomista; Alessandro Pezzella; Carlo Di Cristo; Federica De Lise; Alberto Di Donato; Viviana Izzo
Monocyclic phenols and catechols are important antioxidant compounds for the food and pharmaceutic industries; their production through biotransformation of low-added value starting compounds is of major biotechnological interest. The toluene o-xylene monooxygenase (ToMO) from Pseudomonas sp. OX1 is a bacterial multicomponent monooxygenase (BMM) that is able to hydroxylate a wide array of aromatic compounds and has already proven to be a versatile biochemical tool to produce mono- and dihydroxylated derivatives of aromatic compounds. The molecular determinants of its regioselectivity and substrate specificity have been thoroughly investigated, and a computational strategy has been developed which allows designing mutants able to hydroxylate non-natural substrates of this enzyme to obtain high-added value compounds of commercial interest. In this work, we have investigated the use of recombinant ToMO, expressed in cells of Escherichia coli strain JM109, for the biotransformation of non-natural substrates of this enzyme such as 2-phenoxyethanol, phthalan and 2-indanol to produce six hydroxylated derivatives. The hydroxylated products obtained were identified, isolated and their antioxidant potential was assessed both in vitro, using the DPPH assay, and on the rat cardiomyoblast cell line H9c2. Incubation of H9c2 cells with the hydroxylated compounds obtained from ToMO-catalyzed biotransformation induced a differential protective effect towards a mild oxidative stress induced by the presence of sodium arsenite. The results obtained confirm once again the versatility of the ToMO system for oxyfunctionalization reactions of biotechnological importance. Moreover, the hydroxylated derivatives obtained possess an interesting antioxidant potential that encourages the use of the enzyme for further functionalization reactions and their possible use as scaffolds to design novel bioactive molecules.
Scientific Reports | 2018
Ganna Petruk; Giuliana Donadio; Mariamichela Lanzilli; Rachele Isticato; Daria Maria Monti
Inorganic trivalent arsenic is a major environmental pollutant and exposure to human results in many pathologies, including keratosis and carcinoma. Here, we analyzed the effects of B. subtilis spores on human normal keratinocytes in the presence of sodium arsenite oxidative stress. Pre-treatment of cells with spores before inducing oxidative stress was able to keep normal levels of intracellular ROS, GSH and lipid peroxidation, as well as to inhibit the activation of the MAPK cascade. Moreover, spores showed a positive effect on cell proliferation, probably due to their binding on the cell surface and the activation of intracellular catalases. We found that spores exert their protective effect by the nuclear translocation of Nrf-2, involved in the activation of stress response genes. This, in turn, resulted in a protective effect against sodium arsenite stress injury, as oxidative stress markers were reported to physiological levels when cells were stressed before incubating them with spores. Therefore, B. subtilis spores can be considered as a new agent to counteract oxidative stress on normal human keratinocytes.
PLOS ONE | 2018
Marialuisa Siepi; Rosario Oliva; Luigi Petraccone; Pompea Del Vecchio; Ezio Ricca; Rachele Isticato; Mariamichela Lanzilli; Ornella Maglio; Angela Lombardi; Linda Leone; Eugenio Notomista; Giuliana Donadio
Heavy metals are hazardous environmental contaminants, often highly toxic even at extremely low concentrations. Monitoring their presence in environmental samples is an important but complex task that has attracted the attention of many research groups. We have previously developed a fluorescent peptidyl sensor, dH3w, for monitoring Zn2+ in living cells. This probe, designed on the base on the internal repeats of the human histidine rich glycoprotein, shows a turn on response to Zn2+ and a turn off response to Cu2+. Other heavy metals (Mn2+, Fe2+, Ni2+, Co2+, Pb2+ and Cd2+) do not interfere with the detection of Zn2+ and Cu2+. Here we report that dH3w has an affinity for Hg2+ considerably higher than that for Zn2+ or Cu2+, therefore the strong fluorescence of the Zn2+/dH3w complex is quenched when it is exposed to aqueous solutions of Hg2+, allowing the detection of sub-micromolar levels of Hg2+. Fluorescence of the Zn2+/dH3w complex is also quenched by Cu2+ whereas other heavy metals (Mn2+, Fe2+, Ni2+, Co2+, Cd2+, Pb2+, Sn2+ and Cr3+) have no effect. The high affinity and selectivity suggest that dH3w and the Zn2+/dH3w complex are suited as fluorescent sensor for the detection of Hg2+ and Cu2+ in environmental as well as biological samples.
New Biotechnology | 2018
Mariamichela Lanzilli; Giuliana Donadio; Francesca Anna Fusco; Carmen Sarcinelli; Danila Limauro; Ezio Ricca; Rachele Isticato
Bacterial spores displaying heterologous proteins have been proposed as a safe and efficient method for delivery of antigens and enzymes to animal mucosal surfaces. Initial studies have been performed using Bacillus subtilis spores, but other spore forming organisms have also been considered. B. megaterium spores have been shown capable of displaying large amounts of a model heterologous protein (Discosoma red fluorescent protein mRFP) that in part crossed the exosporium to localize in the space between the outer coat layer and the exosporium. Here, B. megaterium spores have been used to adsorb Bcp1 (bacterioferritin comigratory protein 1), a peroxiredoxin of the archaeon Sulfolobus solfataricus, known to have an antioxidant activity. The spores were highly efficient in adsorbing the heterologous enzyme which, once adsorbed, retained its activity. The adsorbed Bcp1 localized beneath the exosporium, filling the space between the outer coat and the exosporium. This unusual localization contributed to the stability of the enzyme-spore interaction and to the protection of the adsorbed enzyme in simulated intestinal or gastric conditions.
Giornate della Facoltà di Farmacia e Medicina a Salerno | 2014
Valentina Manzo; Giuliana Donadio; Eugenio Notomista; Giusy Russomanno; Carmen Sarcinelli; F. De Lise; Francesca Mensitieri; N. Ventimiglia; C. Di Cristo; Elio Pizzo; Alessandro Pezzella; A. Di Donato; Viviana Izzo
Environmental Engineering and Management Journal | 2012
Valeria Cafaro; Eugenio Notomista; Viviana Izzo; Luca Troncone; Giuliana Donadio; P. Tedesco; A. Di Donato