Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giulio Genovese is active.

Publication


Featured researches published by Giulio Genovese.


Science | 2010

Association of Trypanolytic ApoL1 Variants with Kidney Disease in African-Americans

Giulio Genovese; David J. Friedman; Laurence Lecordier; Pierrick Uzureau; Barry I. Freedman; Donald W. Bowden; Carl D. Langefeld; Taras K. Oleksyk; Andrea L. Uscinski Knob; Andrea J. Bernhardy; Pamela J. Hicks; George W. Nelson; Benoit Vanhollebeke; Cheryl A. Winkler; Jeffrey B. Kopp; Etienne Pays; Martin R. Pollak

Out of Africa Kidney disease is more common in African Americans than in Americans of European descent, and genetics is likely to be a major contributing factor. Genovese et al. (p. 841, published online 15 July) now show that African Americans who carry specific sequence variants in a gene on chromosome 22 encoding apolipoprotein L-1 (APOL1) have an increased risk of developing hypertension-attributed end-stage kidney disease or focal segmental glomerulosclerosis. These variants are absent from European chromosomes. Among the functions ascribed to APOL1 is the ability to lyse and kill trypanosomes. Intriguingly, APOL1 derived from the risk alleles, but not the “wild-type” allele, killed Trypanosoma brucei rhodesiense, which causes African sleeping sickness. Genetic variants associated with kidney disease in African Americans may confer protection against trypanosomes. African Americans have higher rates of kidney disease than European Americans. Here, we show that, in African Americans, focal segmental glomerulosclerosis (FSGS) and hypertension-attributed end-stage kidney disease (H-ESKD) are associated with two independent sequence variants in the APOL1 gene on chromosome 22 {FSGS odds ratio = 10.5 [95% confidence interval (CI) 6.0 to 18.4]; H-ESKD odds ratio = 7.3 (95% CI 5.6 to 9.5)}. The two APOL1 variants are common in African chromosomes but absent from European chromosomes, and both reside within haplotypes that harbor signatures of positive selection. ApoL1 (apolipoprotein L-1) is a serum factor that lyses trypanosomes. In vitro assays revealed that only the kidney disease–associated ApoL1 variants lysed Trypanosoma brucei rhodesiense. We speculate that evolution of a critical survival factor in Africa may have contributed to the high rates of renal disease in African Americans.


Nature | 2014

A polygenic burden of rare disruptive mutations in schizophrenia

Shaun Purcell; Jennifer L. Moran; Menachem Fromer; Douglas M. Ruderfer; Nadia Solovieff; Panos Roussos; Colm O'Dushlaine; K D Chambert; Sarah E. Bergen; Anna K. Kähler; Laramie Duncan; Eli A. Stahl; Giulio Genovese; Esperanza Fernández; Mark O. Collins; Noboru H. Komiyama; Jyoti S. Choudhary; Patrik K. E. Magnusson; Eric Banks; Khalid Shakir; Kiran Garimella; Timothy Fennell; Mark DePristo; Seth G. N. Grant; Stephen J. Haggarty; Stacey Gabriel; Edward M. Scolnick; Eric S. Lander; Christina M. Hultman; Patrick F. Sullivan

Schizophrenia is a common disease with a complex aetiology, probably involving multiple and heterogeneous genetic factors. Here, by analysing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we demonstrate a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes. Particularly enriched gene sets include the voltage-gated calcium ion channel and the signalling complex formed by the activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, sets previously implicated by genome-wide association and copy-number variation studies. Similar to reports in autism, targets of the fragile X mental retardation protein (FMRP, product of FMR1) are enriched for case mutations. No individual gene-based test achieves significance after correction for multiple testing and we do not detect any alleles of moderately low frequency (approximately 0.5 to 1 per cent) and moderately large effect. Taken together, these data suggest that population-based exome sequencing can discover risk alleles and complements established gene-mapping paradigms in neuropsychiatric disease.


Nature | 2016

Schizophrenia risk from complex variation of complement component 4

Aswin Sekar; Allison R. Bialas; Heather de Rivera; Avery Davis; Timothy R. Hammond; Nolan Kamitaki; Katherine Tooley; Jessy Presumey; Matthew A. Baum; Vanessa Van Doren; Giulio Genovese; Samuel A. Rose; Robert E. Handsaker; Mark J. Daly; Michael C. Carroll; Beth Stevens; Steven A. McCarroll

Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia’s strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.


Journal of The American Society of Nephrology | 2011

APOL1 Genetic Variants in Focal Segmental Glomerulosclerosis and HIV-Associated Nephropathy

Jeffrey B. Kopp; George W. Nelson; Karmini Sampath; Randall C. Johnson; Giulio Genovese; Ping An; David J. Friedman; William A. Briggs; Richard A. Dart; Stephen M. Korbet; Michele H. Mokrzycki; Paul L. Kimmel; Sophie Limou; Tejinder S. Ahuja; Jeffrey S. Berns; Justyna Fryc; Eric E. Simon; Michael C. Smith; Howard Trachtman; Donna M. Michel; Jeffrey R. Schelling; David Vlahov; Martin R. Pollak; Cheryl A. Winkler

Trypanolytic variants in APOL1, which encodes apolipoprotein L1, associate with kidney disease in African Americans, but whether APOL1-associated glomerular disease has a distinct clinical phenotype is unknown. Here we determined APOL1 genotypes for 271 African American cases, 168 European American cases, and 939 control subjects. In a recessive model, APOL1 variants conferred seventeenfold higher odds (95% CI 11 to 26) for focal segmental glomerulosclerosis (FSGS) and twenty-nine-fold higher odds (95% CI 13 to 68) for HIV-associated nephropathy (HIVAN). FSGS associated with two APOL1 risk alleles associated with earlier age of onset (P = 0.01) and faster progression to ESRD (P < 0.01) but similar sensitivity to steroids compared with other subjects. Individuals with two APOL1 risk alleles have an estimated 4% lifetime risk for developing FSGS, and untreated HIV-infected individuals have a 50% risk for developing HIVAN. The effect of carrying two APOL1 risk alleles explains 18% of FSGS and 35% of HIVAN; alternatively, eliminating this effect would reduce FSGS and HIVAN by 67%. A survey of world populations indicated that the APOL1 kidney risk alleles are present only on African chromosomes. In summary, African Americans carrying two APOL1 risk alleles have a greatly increased risk for glomerular disease, and APOL1-associated FSGS occurs earlier and progresses to ESRD more rapidly. These data add to the evidence base required to determine whether genetic testing for APOL1 has a use in clinical practice.


Current Biology | 2009

Deviant kinetochore-microtubule dynamics underlie chromosomal instability

Samuel F. Bakhoum; Giulio Genovese; Duane A. Compton

The persistent malattachment of microtubules to chromosomes at kinetochores is a major mechanism of chromosomal instability (CIN) [1, 2]. In normal diploid cells, malattachments arise spontaneously and are efficiently corrected to preserve genomic stability [3]. However, it is unknown whether cancer cells with CIN possess the ability to efficiently correct attachment errors. Here we show that kinetochore microtubule attachments in cancer cells with CIN are inherently more stable than those in normal diploid RPE-1 cells. The observed differences in attachment stability account for the persistence of malattachments into anaphase, where they cause chromosome missegregation. Furthermore, increasing the stability of kinetochore microtubule attachments in normal diploid RPE-1 cells, either by depleting the tumor suppressor protein APC or the kinesin-13 protein MCAK, is sufficient to promote chromosome segregation defects to levels comparable to those in cancer cells with CIN. Collectively, these data identify that cancer cells have a diminished capacity to correct erroneous kinetochore microtubule attachments and account for the widespread occurrence of CIN in tumors [4].


Journal of The American Society of Nephrology | 2010

The Apolipoprotein L1 (APOL1) Gene and Nondiabetic Nephropathy in African Americans

Barry I. Freedman; Jeffrey B. Kopp; Carl D. Langefeld; Giulio Genovese; David J. Friedman; George W. Nelson; Cheryl A. Winkler; Donald W. Bowden; Martin R. Pollak

Mapping by admixture linkage disequilibrium (LD) detected strong association between nonmuscle myosin heavy chain 9 gene (MYH9) variants on chromosome 22 and nondiabetic nephropathy in African Americans. MYH9-related variants were posited to be the probable, but not necessarily the definitive, causal variants as a result of impressive statistical evidence of association, renal expression, and a role in autosomal dominant MYH9 disorders characterized by progressive glomerulosclerosis (Epstein and Fechtner syndromes). Dense mapping within MYH9 revealed striking LD patterns and racial variation in risk allele frequencies, suggesting population genetic factors such as selection may be operative in this region. Genovese and colleagues examined large chromosomal regions adjacent to MYH9 using genome-wide association methods and non-HapMap single nucleotide polymorphisms identified in Yoruba from the 1000 Genomes project. Statistically stronger associations were detected between two independent sequence variants in the Apolipoprotein L1 gene (APOL1) and nondiabetic nephropathy in African Americans, with odds ratios of 10.5 in idiopathic FSGS and 7.3 in hypertension-attributed ESRD. These kidney disease risk variants likely rose to high frequency in Africa because they confer resistance to trypanosomal infection and protect from African sleeping sickness. Risk variants in MYH9 and APOL1 are in strong LD, and the genetic risk that was previously attributed to MYH9 may reside, in part or in whole, in APOL1, although more complex models of risk cannot be excluded. This association likely explains racial disparities in nondiabetic nephropathy as a result of the high prevalence of risk alleles in individuals of African ancestry.


Journal of The American Society of Nephrology | 2011

Population-Based Risk Assessment of APOL1 on Renal Disease

David J. Friedman; Julia Kozlitina; Giulio Genovese; Prachi Jog; Martin R. Pollak

Case-control studies suggest that African Americans with genetic variants in both copies of APOL1 have increased risk for hypertension-attributable ESRD and focal segmental glomerulosclerosis. Here, we tested these risk variants in the Dallas Heart Study to ascertain the prevalence of APOL1-associated renal disease in a large population-based study and to estimate the contribution of APOL1 risk variants to disparities in renal disease. We determined the genotype of 1825 African Americans and 1042 European Americans. Among participants without diabetes, we identified microalbuminuria in 2.3% of European Americans, 6.0% of African Americans with no or one APOL1 risk allele, and 16.5% of African Americans with two risk alleles. In addition, the proportions of participants with estimated GFR < 60 ml/min per 1.73 m(2) was 1.5% for nondiabetic European Americans, 1.7% for African Americans with no or one APOL1 risk allele, and 6.7% for African Americans with two risk alleles. The APOL1 genotype did not associate with any differences in rates of CKD for study participants with diabetes. Our data suggest that more than 3 million African Americans likely have the high-risk genotype and are at markedly increased risk for nondiabetic CKD. In contrast, African Americans without the risk genotype and European Americans appear to have similar risk for developing nondiabetic CKD.


Kidney International | 2010

A risk allele for focal segmental glomerulosclerosis in African Americans is located within a region containing APOL1 and MYH9

Giulio Genovese; Stephen Tonna; Andrea L. Uscinski Knob; Gerald B. Appel; Avi Katz; Andrea J. Bernhardy; Alexander Needham; Ross Lazarus; Martin R. Pollak

Genetic variation at the MYH9 locus is linked to the high incidence of focal segmental glomerulosclerosis (FSGS) and non-diabetic end-stage renal disease among African Americans. To further define risk alleles with FSGS we performed a genome-wide association analysis using more than one million single-nucleotide polymorphisms in 56 African-American and 61 European-American patients with biopsy-confirmed FSGS. Results were compared to 1641 European Americans and 1800 African Americans as unselected controls. While no association was observed in the cohort of European Americans, the case-control comparison of African Americans found variants within a 60 kb region of chromosome 22 containing part of the APOL1 and MYH9 genes associated with increased risk of FSGS. This region spans different linkage disequilibrium blocks, and variants associating with disease within this region are in linkage disequilibrium with variants which have shown signals of natural selection. APOL1 is a strong candidate for a gene that has undergone recent natural selection and is known to be involved in the infection by Trypanosoma brucei, a parasite common in Africa that has recently adapted to infect human hosts. Further studies will be required to establish which variants are causally related to kidney disease, what mutations caused the selective sweep, and to ultimately determine if these are the same.


Circulation Research | 2014

Increased Burden of Cardiovascular Disease in Carriers of APOL1 Genetic Variants

Kaoru Ito; Alexander G. Bick; Jason Flannick; David J. Friedman; Giulio Genovese; Michael Parfenov; Steven R. DePalma; Namrata Gupta; Stacey B. Gabriel; Herman A. Taylor; Ervin R. Fox; Christopher Newton-Cheh; Sekar Kathiresan; Joel N. Hirschhorn; David Altshuler; Martin R. Pollak; James G. Wilson; Jonathan G. Seidman; Christine E. Seidman

Rationale: Two distinct alleles in the gene encoding apolipoprotein L1 (APOL1), a major component of high-density lipoprotein, confer protection against Trypanosoma brucei rhodesiense infection and also increase risk for chronic kidney disease. Approximately 14% of Americans with African ancestry carry 2 APOL1 risk alleles, accounting for the high chronic kidney disease burden in this population. Objective: We tested whether APOL1 risk alleles significantly increase risk for atherosclerotic cardiovascular disease (CVD) in African Americans. Methods and Results: We sequenced APOL1 in 1959 randomly selected African American participants in the Jackson Heart Study (JHS) and evaluated associations between APOL1 genotypes and renal and cardiovascular phenotypes. Previously identified association between APOL1 genotypes and chronic kidney disease was confirmed (P=2.4×10−6). Among JHS participants with 2 APOL1 risk alleles, we observed increased risk for CVD (50/763 events among participants without versus 37/280 events among participants with 2 risk alleles; odds ratio, 2.17; P=9.4×10−4). We replicated this novel association of APOL1 genotype with CVD in Women’s Health Initiative (WHI) participants (66/292 events among participants without versus 37/101 events among participants with 2 risk alleles; odds ratio, 1.98; P=8.37×10−3; JHS and WHI combined, P=8.5×10−5; odds ratio, 2.12). The increased risk for CVD conferred by APOL1 alleles was robust to correction for both traditional CVD risk factors and chronic kidney disease. Conclusions: APOL1 variants contribute to atherosclerotic CVD risk, indicating a genetic component to cardiovascular health disparities in individuals of African ancestry. The considerable population of African Americans with 2 APOL1 risk alleles may benefit from intensive interventions to reduce CVD.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Evolution of the primate trypanolytic factor APOL1

Russell Thomson; Giulio Genovese; Chelsea Canon; Daniella Kovacsics; Matthew K. Higgins; Mark Carrington; Cheryl A. Winkler; Jeffrey B. Kopp; Charles N. Rotimi; Adebowale Adeyemo; Ayo Doumatey; George Ayodo; Seth L. Alper; Martin R. Pollak; David J. Friedman; Jayne Raper

Significance African trypanosomes are parasites that can cause African sleeping sickness in humans. Humans and some primates, but not other mammals, have a gene called APOL1 that protects against certain trypanosomes. Genetic variants in APOL1 that arose in Africa are strongly associated with kidney disease in African Americans. These kidney disease-associated variants may have risen to high frequency in Africa because they can defend humans against a particularly pathogenic trypanosome. In this paper, we show how APOL1 has evolved by analyzing the distribution of these variants in Africa and then elucidating the molecular mechanisms that enhance their trypanosome killing capacity. We also show that these antitrypanosomal APOL1 variants may have adverse consequences for the host. ApolipoproteinL1 (APOL1) protects humans and some primates against several African trypanosomes. APOL1 genetic variants strongly associated with kidney disease in African Americans have additional trypanolytic activity against Trypanosoma brucei rhodesiense, the cause of acute African sleeping sickness. We combined genetic, physiological, and biochemical studies to explore coevolution between the APOL1 gene and trypanosomes. We analyzed the APOL1 sequence in modern and archaic humans and baboons along with geographic distribution in present day Africa to understand how the kidney risk variants evolved. Then, we tested Old World monkey, human, and engineered APOL1 variants for their ability to kill human infective trypanosomes in vivo to identify the molecular mechanism whereby human trypanolytic APOL1 variants evade T. brucei rhodesiense virulence factor serum resistance-associated protein (SRA). For one APOL1 kidney risk variant, a two-residue deletion of amino acids 388 and 389 causes a shift in a single lysine residue that mimics the Old World monkey sequence, which augments trypanolytic activity by preventing SRA binding. A second human APOL1 kidney risk allele, with an amino acid substitution that also restores sequence alignment with Old World monkeys, protected against T. brucei rhodesiense due in part to reduced SRA binding. Both APOL1 risk variants induced tissue injury in murine livers, the site of transgenic gene expression. Our study shows that both genetic variants of human APOL1 that protect against T. brucei rhodesiense have recapitulated molecular signatures found in Old World monkeys and raises the possibility that APOL1 variants have broader innate immune activity that extends beyond trypanosomes.

Collaboration


Dive into the Giulio Genovese's collaboration.

Top Co-Authors

Avatar

Martin R. Pollak

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

David J. Friedman

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela Sklar

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Patrick F. Sullivan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea J. Bernhardy

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge