Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppa Augello is active.

Publication


Featured researches published by Giuseppa Augello.


Journal of Cellular Physiology | 2010

Paclitaxel and beta-lapachone synergistically induce apoptosis in human retinoblastoma Y79 cells by downregulating the levels of phospho-Akt.

Antonella D'Anneo; Giuseppa Augello; Andrea Santulli; Michela Giuliano; Riccardo Di Fiore; Concetta Maria Messina; Giovanni Tesoriere; Renza Vento

Paclitaxel (PTX) and beta‐lapachone (LPC) are naturally occurring compounds that have shown a large spectrum of anticancer activity. In this article we show for the first time that PTX/LPC combination induces potent synergistic apoptotic effects in human retinoblastoma Y79 cells. Combination of suboptimal doses of PTX (0.3 nM) and LPC (1.5 µM) caused biochemical and morphological signs of apoptosis at 48 h of treatment. These effects were accompanied by potent lowering in inhibitor of apoptosis proteins and by activation of Bid and caspases 3 and 6 with lamin B and PARP breakdown. PTX/LPC combination acted by favoring p53 stabilization through a lowering in p‐Akt levels and in ps166‐MDM2, the phosphorylated‐MDM2 form that enters the nucleus and induces p53 export and degradation. Treatment with wortmannin or transfection with a dominant negative form of Akt anticipated at 24 h the effects induced by PTX/LPC, suggesting a protective role against apoptosis played by Akt in Y79 cells. In line with these results, we demonstrated that Y79 cells contain constitutively active Akt, which forms a cytosolic complex with p53 and MDM2 driving p53 degradation. PTX/LPC treatment induced a weakness of Akt–MDM2–p53 complex and increased nuclear p53 levels. Our results suggest that phospho‐Akt lowering is at the root of the apoptotic action exerted by PTX/LPC combination and provide strong validation for a treatment approach that targets survival signals represented by phospho‐Akt and inhibitor of apoptosis proteins. J. Cell. Physiol. 222: 433–443, 2010.


Cell Death and Disease | 2016

NUPR1, a new target in liver cancer: implication in controlling cell growth, migration, invasion and sorafenib resistance

Maria Rita Emma; J L Iovanna; Dimcho Bachvarov; Roberto Puleio; G R Loria; Giuseppa Augello; S Candido; M Libra; A Gulino; V Cancila; J A McCubrey; Giuseppe Montalto; Melchiorre Cervello

Sorafenib, an oral multikinase inhibitor, is the only approved agent for the treatment of advanced hepatocellular carcinoma (HCC). However, its benefits are modest, and as its mechanisms of action remain elusive, a better understanding of its anticancer effects is needed. Based on our previous study results, we investigated here the implication of the nuclear protein 1 (NUPR1) in HCC and its role in sorafenib treatment. NUPR1 is a stress-inducible protein that is overexpressed in various malignancies, but its role in HCC is not yet fully understood. We found that NUPR1 expression was significantly higher in primary human HCC samples than in the normal liver. Knockdown of NUPR1 significantly increased cell sensitivity to sorafenib and inhibited the cell growth, migration and invasion of HCC cells, both in vitro and in vivo. Moreover, NUPR1 silencing influenced the expression of RELB and IER3 genes. Unsurprisingly, RELB and IER3 knockdown also inhibited HCC cell viability, growth and migration. Using gene expression profiling of HCC cells following stable NUPR1 knockdown, we found that genes functionally involved in cell death and survival, cellular response to therapies, lipid metabolism, cell growth and proliferation, molecular transport and cellular movement were mostly suppressed. Network analysis of dynamic gene expression identified NF-κB and ERK as downregulated gene nodes, and several HCC-related oncogenes were also suppressed. We identified Runt-related transcription factor 2 (RUNX2) gene as a NUPR1-regulated gene and demonstrated that RUNX2 gene silencing inhibits HCC cell viability, growth, migration and increased cell sensitivity to sorafenib. We propose that the NUPR1/RELB/IER3/RUNX2 pathway has a pivotal role in hepatocarcinogenesis. The identification of the NUPR1/RELB/IER3/RUNX2 pathway as a potential therapeutic target may contribute to the development of new treatment strategies for HCC management.


International Journal of Oncology | 2017

Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation

Antonella Cusimano; Daniele Balasus; Antonina Azzolina; Giuseppa Augello; Maria Rita Emma; Caterina Di Sano; Roberto Gramignoli; Stephen C. Strom; James A. McCubrey; Giuseppe Montalto; Melchiorre Cervello

The beneficial health properties of the Mediter-ranean diet are well recognized. The principle source of fat in Mediterranean diet is extra-virgin olive oil (EVOO). Oleocanthal (OC) is a naturally occurring minor phenolic compound isolated from EVOO, which has shown a potent anti-inflammatory activity, by means of its ability to inhibit the cyclooxygenase (COX) enzymes COX-1 and COX-2. A large body of evidence indicates that phenols exhibit anticancer activities. The aim of the present study was to evaluate the potential anticancer effects of OC in hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) models. A panel of human HCC (HepG2, Huh7, Hep3B and PLC/PRF/5) and CRC (HT29, SW480) cell lines was used. Cells were treated with OC, and cell viability and apoptosis were evaluated. Compared with classical commercially available COX inhibitors (ibuprofen, indomethacin, nimesulide), OC was more effective in inducing cell growth inhibition in HCC and CRC cells. Moreover, OC inhibited colony formation and induced apoptosis, as confirmed by PARP cleavage, activation of caspases 3/7 and chromatin condensation. OC treatment in a dose dependent-manner induced expression of γH2AX, a marker of DNA damage, increased intracellular ROS production and caused mitochondrial depolarization. Moreover, the effects of OC were suppressed by the ROS scavenger N-acetyl-L-cysteine. Finally, OC was not toxic in primary normal human hepatocytes. In conclusion, OC treatment was found to exert a potent anticancer activity against HCC and CRC cells. Taken together, our findings provide preclinical support of the chemotherapeutic potential of EVOO against cancer.


Journal of Agricultural and Food Chemistry | 2017

Biocompatible Lipid Nanoparticles as Carriers To Improve Curcumin Efficacy in Ovarian Cancer Treatment

Maria Luisa Bondì; Maria Rita Emma; Chiara Botto; Giuseppa Augello; Antonina Azzolina; Francesca Di Gaudio; Emanuela Fabiola Craparo; Gennara Cavallaro; Dimcho Bachvarov; Melchiorre Cervello

Curcumin is a natural molecule with proved anticancer efficacy on several human cancer cell lines. However, its clinical application has been limited due to its poor bioavailability. Nanocarrier-based drug delivery approaches could make curcumin dispersible in aqueous media, thus overtaking the limits of its low solubility. The aim of this study was to increase the bioavailability and the antitumoral activity of curcumin, by entrapping it into nanostructured lipid carriers (NLCs). For this purpose here we describe the preparation and characterization of three kinds of curcumin-loaded NLCs. The nanosystems allowed the achievement of a controlled release of curcumin, the amounts of curcumin released after 24 h from Compritol-Captex, Compritol-Miglyol, and Compritol NLCs being, respectively, equal to 33, 28, and 18% w/w on the total entrapped curcumin. Considering the slower curcumin release profile, Compritol NLCs were chosen to perform successive in vitro studies on ovarian cancer cell lines. The results show that curcumin-loaded NLCs maintain anticancer activity, and reduce cell colony survival more effectively than free curcumin. As an example, the ability of A2780S cells to form colonies was decreased after treatment with 5 μM free curcumin by 50% ± 6, whereas, at the same concentration, the delivery of curcumin with NLC significantly (p < 0.05) inhibited colony formation to approximately 88% ± 1, therefore potentiating the activity of curcumin to inhibit A2780S cell growth. The obtained results clearly suggest that the entrapment of curcumin into NLCs increases curcumin efficacy in vitro, indicating the potential use of NLCs as curcumin delivery systems.


Advances in biological regulation | 2017

Pivotal roles of glycogen synthase-3 in hepatocellular carcinoma

Melchiorre Cervello; Giuseppa Augello; Antonella Cusimano; Maria Rita Emma; Daniele Balasus; Antonina Azzolina; James A. McCubrey; Giuseppe Montalto

Hepatocellular carcinoma (HCC) is one of the most common cancers in the world, and represents the second most frequently cancer and third most common cause of death from cancer worldwide. At advanced stage, HCC is a highly aggressive tumor with a poor prognosis and with very limited response to common therapies. Therefore, there is still the need for new effective and well-tolerated therapeutic strategies. Molecular-targeted therapies hold promise for HCC treatment. One promising molecular target is the multifunctional serine/threonine kinase glycogen synthase kinase 3 (GSK-3). The roles of GSK-3β in HCC remain controversial, several studies suggested a possible role of GSK-3β as a tumor suppressor gene in HCC, whereas, other studies indicate that GSK-3β is a potential therapeutic target for this neoplasia. In this review, we will focus on the different roles that GSK-3 plays in HCC and its interaction with signaling pathways implicated in the pathogenesis of HCC, such as Insulin-like Growth Factor (IGF), Notch, Wnt/β-catenin, Hedgehog (HH), and TGF-β pathways. In addition, the pivotal roles of GSK3 in epithelial-mesenchymal transition (EMT), invasion and metastasis will be also discussed.


International Journal of Pharmaceutics | 2015

Lipid nanocarriers containing sorafenib inhibit colonies formation in human hepatocarcinoma cells.

Maria Luisa Bondì; Chiara Botto; Erika Amore; Maria Rita Emma; Giuseppa Augello; Emanuela Fabiola Craparo; Melchiorre Cervello

Here, the potential of two nanostructured lipid carriers (NLC) for controlled release of sorafenib was evaluated. The obtained systems showed characteristics suitable as drug delivery systems for the treatment of hepatocellular carcinoma (HCC) through parenteral administration. The use of a mixture between a solid lipid (tripalmitin) with a liquid lipid (Captex 355 EP/NF or Miglyol 812) to prepare NLC systems could give a higher drug loading capacity and a longer term stability during storage than that obtained by using only solid lipids. The obtained nanoparticles showed a nanometer size and high negative zeta potential values. Scansion electron microscopy (SEM) of the sorafenib loaded NLC revealed a spherical shape with a diameter <300 nm. In vitro biological studies demonstrated that sorafenib loaded into NLC had enhanced anti-tumor activity compared to that of free drug. This finding raises hope in terms of future drug delivery strategy of sorafenib loaded NLC, that can be useful for therapeutic application in HCC.


Cell Cycle | 2016

A PTEN inhibitor displays preclinical activity against hepatocarcinoma cells

Giuseppa Augello; Roberto Puleio; Maria Rita Emma; Antonella Cusimano; Guido R. Loria; James A. McCubrey; Giuseppe Montalto; Melchiorre Cervello

ABSTRACT Phosphatase and tensin homolog (PTEN) gene is considered a tumor suppressor gene. However, PTEN mutations rarely occur in hepatocellular carcinoma (HCC), whereas heterozygosity of PTEN, resulting in reduced PTEN expression, has been observed in 32–44% of HCC patients. In the present study, we investigated the effects of the small molecule PTEN inhibitor VO-OHpic in HCC cells. VO-OHpic inhibited cell viability, cell proliferation and colony formation, and induced senescence-associated β-galactosidase activity in Hep3B (low PTEN expression) and to a lesser extent in PLC/PRF/5 (high PTEN expression) cells, but not in PTEN-negative SNU475 cells. VO-OHpic synergistically inhibited cell viability when combined with PI3K/mTOR and RAF/MEK/ERK pathway inhibitors, but only in Hep3B cells, and significantly inhibited tumor growth in nude mice bearing xenografts of Hep3B cells. Therefore, we demonstrated for the first time that VO-OHpic inhibited cell growth and induced senescence in HCC cells with low PTEN expression, and that the combination of VO-OHpic with PI3K/mTOR and RAF/MEK/ERK inhibitors resulted in a more effective tumor cell kill. Our findings, hence, provide proof-of-principle evidence that pharmacological inhibition of PTEN may represent a promising approach for HCC therapy in a subclass of patients with a low PTEN expression.


Cell Death and Disease | 2018

Preclinical evaluation of antitumor activity of the proteasome inhibitor MLN2238 (ixazomib) in hepatocellular carcinoma cells

Giuseppa Augello; Martina Modica; Antonina Azzolina; Roberto Puleio; Giovanni Cassata; Maria Rita Emma; Caterina Di Sano; Antonella Cusimano; Giuseppe Montalto; Melchiorre Cervello

Hepatocellular carcinoma (HCC) is one of the common malignancies and is an increasingly important cause of cancer death worldwide. Surgery, chemotherapy, and radiation therapy extend the 5-year survival limit in HCC patients by only 6%. Therefore, there is a need to develop new therapeutic approaches for the treatment of this disease. The orally bioavailable proteasome inhibitor MLN2238 (ixazomib) has been demonstrated to have anticancer activity. In the present study, we investigated the preclinical therapeutic efficacy of MLN2238 in HCC cells through in vitro and in vivo models, and examined its molecular mechanisms of action. MLN2238 inhibited cell viability in human HCC cells HepG2, Hep3B, and SNU475 in a time- and dose-dependent manner. Flow cytometry analysis demonstrated that MLN2238 induced G2/M cell cycle arrest and cellular apoptosis in HCC cells. Cell cycle arrest was associated with increased expression levels of p21 and p27. MLN2238-induced apoptosis was confirmed by caspase-3/7 activation, PARP cleavage and caspase-dependent β-catenin degradation. In addition, MLN2238 activated ER stress genes in HCC cells and increased the expression of the stress-inducible gene nuclear protein-1. Furthermore, MLN2238 treatment induced upregulation of myeloid cell leukemia-1 (Mcl-1) protein, and Mcl-1 knockdown sensitized HCC cells to MLN2238 treatment, suggesting the contribution of Mcl-1 expression to MLN2238 resistance. This result was also confirmed using the novel Mcl-1 small molecule inhibitor A1210477. Association of A1210477 and MLN2238 determined synergistic antitumor effects in HCC cells. Finally, in vivo orally administered MLN2238 suppressed tumor growth of Hep3B cells in xenograft models in nude mice. In conclusion, our results offer hope for a new therapeutic opportunity in the treatment of HCC patients.


Cancer Biology & Therapy | 2013

In human retinoblastoma Y79 cells okadaic acid-parthenolide co-treatment induces synergistic apoptotic effects, with PTEN as a key player.

Riccardo Di Fiore; Rosa Drago-Ferrante; Antonella D’Anneo; Giuseppa Augello; Daniela Carlisi; Anna De Blasio; Michela Giuliano; Giovanni Tesoriere; Renza Vento

Retinoblastoma is the most common intraocular malignancy of childhood. In developing countries, treatment is limited, long-term survival rates are low and current chemotherapy causes significant morbidity to pediatric patients and significantly limits dosing. Therefore there is an urgent need to identify new therapeutic strategies to improve the clinical outcome of patients with retinoblastoma. Here, we investigated the effects of two natural compounds okadaic acid (OKA) and parthenolide (PN) on human retinoblastoma Y79 cells. For the first time we showed that OKA/PN combination at subtoxic doses induces potent synergistic apoptotic effects accompanied by lowering in p-Akt levels, increasing in the stabilized forms of p53 and potent decrease in pS166-Mdm2. We also showed the key involvement of PTEN which, after OKA/PN treatment, potently increased before p53, thus suggesting that p53 activation was under PTEN action. Moreover, after PTEN-knockdown p-Akt/ pS166Mdm2 increased over basal levels and p53 significantly lowered, while OKA/PN treatment failed both to lower p-Akt and pS166-Mdm2 and to increase p53 below/over their basal levels respectively. OKA/PN treatment potently increased ROS levels whereas decreased those of GSH. Reducing cellular GSH by l-butathionine-[S,R]-sulfoximine treatment significantly anticipated the cytotoxic effect exerted by OKA/PN. Furthermore, the effects of OKA/PN treatment on both GSH content and cell viability were less pronounced in PTEN silenced cells than in control cells. The results provide strong suggestion for combining a treatment approach that targets the PTEN/Akt/Mdm2/p53 pathway.


International Journal of Radiation Biology | 2017

Cytokine profile of breast cell lines after different radiation doses

Valentina Bravatà; Luigi Minafra; Giusi Irma Forte; Francesco Paolo Cammarata; Giorgio Ivan Russo; Federica Maria Di Maggio; Giuseppa Augello; Domenico Lio; Maria Carla Gilardi

Abstract Purpose: Ionizing radiation (IR) treatment activates inflammatory processes causing the release of a great amount of molecules able to affect the cell survival. The aim of this study was to analyze the cytokine signature of conditioned medium produced by non-tumorigenic mammary epithelial cell line MCF10A, as well as MCF7 and MDA-MB-231 breast cancer cell lines, after single high doses of IR in order to understand their role in high radiation response. Materials and methods: We performed a cytokine profile of irradiated conditioned media of MCF10A, MCF7 and MDA-MB-231 cell lines treated with 9 or 23 Gy, by Luminex and ELISA analyses. Results: Overall, our results show that both 9 Gy and 23 Gy of IR induce the release within the first 72 h of cytokines and growth factors potentially able to influence the tumor outcome, with a dose-independent and cell-line dependent signature. Moreover, our results show that the cell-senescence phenomenon does not correlate with the amount of ‘senescence-associated secretory phenotype’ (SASP) molecules released in media. Thus, additional mechanisms are probably involved in this process. Conclusions: These data open the possibility to evaluate cytokine profile as useful marker in modulating the personalized radiotherapy in breast cancer care.

Collaboration


Dive into the Giuseppa Augello's collaboration.

Top Co-Authors

Avatar

Maria Rita Emma

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Bondì

University of Palermo

View shared research outputs
Researchain Logo
Decentralizing Knowledge