Maria Luisa Bondì
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Luisa Bondì.
Nanomedicine: Nanotechnology, Biology and Medicine | 2010
Maria Luisa Bondì; Emanuela Fabiola Craparo; Gaetano Giammona; Filippo Drago
AIM Developments within nanomedicine have revealed a great potential for drug delivery to the brain. In this study nanoparticulate systems as drug carriers for riluzole, with sufficiently high loading capacity and small particle size, were prepared to a reach therapeutic drug level in the brain. MATERIALS & METHOD Solid lipid nanoparticles containing riluzole have great potential as drug-delivery systems for amyotrophic lateral sclerosis and were produced by using the warm oil-in-water microemulsion technique. The resulting systems obtained were approximately 88 nm in size and negatively charged. Drug-release profiles demonstrated that a drug release was dependent on medium pH. Biodistribution of riluzole blended into solid lipid nanoparticles was carried out after administration to rats and the results were compared with those obtained by riluzole aqueous dispersion administration. Rats were sacrificed at time intervals of 8, 16 and 30 h, and the riluzole concentration in the blood and organs such as the brain, liver, spleen, heart and kidney was determined. RESULTS It was demonstrated that these solid lipid nanoparticles were able to successfully carry riluzole into the CNS. Moreover, a low drug biodistribution in organs such as the liver, spleen, heart, kidneys and lung was found when riluzole was administered as drug-loaded solid lipid nanoparticles. CONCLUSION Riluzole-loaded solid lipid nanoparticles showed colloidal size and high drug loading, a greater efficacy than free riluzole in rats, a higher capability to carry the drug into the brain and a lower indiscriminate biodistribution.
Free Radical Research | 2009
Pasquale Picone; Maria Luisa Bondì; Giovanna Montana; Andreina Bruno; Giovanna Pitarresi; Gaetano Giammona; Marta Di Carlo
Oxidative stress and dysfunctional mitochondria are among the earliest events in AD, triggering neurodegeneration. The use of natural antioxidants could be a neuroprotective strategy for blocking cell death. Here, the antioxidant action of ferulic acid (FA) on different paths leading to degeneration of recombinant β-amyloid peptide (rAβ42) treated cells was investigated. Further, to improve its delivery, a novel drug delivery system (DDS) was used. Solid lipid nanoparticles (SLNs), empty or containing ferulic acid (FA-SNL), were developed as DDS. The resulting particles had small colloidal size and highly negative surface charge in water. Using neuroblastoma cells and rAβ42 oligomers, it was demonstrated that free and SLNs-loaded FA recover cell viability. FA treatment, in particular if loaded into SLNs, decreased ROS generation, restored mitochondrial membrane potential (Δψm) and reduced cytochrome c release and intrinsic pathway apoptosis activation. Further, FA modulated the expression of Peroxiredoxin, an anti-oxidative protein, and attenuated phosphorylation of ERK1/2 activated by Aβ oligomers.
Expert Opinion on Drug Delivery | 2010
Maria Luisa Bondì; Emanuela Fabiola Craparo
Importance of the field: Gene therapy represents a new paradigm in the prevention and treatment of many inherited and acquired diseases, including genetic disorders, such as cystic fibrosis, haemophilia and many somatic diseases, such as tumours, neurodegenerative diseases and viral infections, such as AIDS. Areas covered in this review: Among a large array of non-viral transfection agents used for in-vitro applications, cationic SLNs are the topic of this review, being recently proposed as an alternative carrier for DNA delivery, due to many technological advantages such as large-scale production from substances generally recognized as safe, good storage stability and possibility of steam sterilization and lyophilisation. What the reader will gain: The authors give some information on the knowledge of intracellular trafficking and SLNs-DNA complex chemical-physical properties reported until now in the literature. Take home message: The future success of cationic SLNs for administration of genetic material will depend on their ability to efficiently cross the physiological barriers, selectively targeting a specific cell type in vivo and expressing therapeutic genes.
Drug Delivery | 2007
Maria Luisa Bondì; Emanuela Fabiola Craparo; Gaetano Giammona; Melchiorre Cervello; Antonina Azzolina; Patrizia Diana; Anna Martorana; Girolamo Cirrincione
This article describes the development of nanostructured lipid carriers (NLC) as colloidal carriers for two antitumor compounds that possess a remarkable antineoplastic activity. But their limited stability and low solubility in water could give a very low parenteral bioavailability. Results revealed an enhancement of the cytotoxicity effect of drug-loaded NLC on human prostate cancer (PC-3) and human hepatocellular carcinoma (HuH-6, HuH-7) cell lines with respect to that of both free drugs. Results of characterization studies strongly support the potential application of these drugs-loaded NLC as prolonged delivery systems for lipophilic drugs by several administration routes, in particular for intravenous administration.
Journal of Drug Targeting | 2007
Maria Luisa Bondì; Antonina Azzolina; Emanuela Fabiola Craparo; Nadia Lampiasi; Giulia Capuano; Gaetano Giammona; Melchiorre Cervello
In this paper, the suitability of novel cationic solid-lipid nanoparticles (SLN) as a nonviral transfection agent for gene delivery was investigated. SLN were produced by using the microemulsion method and Compritol ATO 888 as matrix lipid, dimethyldioctadecylammonium bromide as charge carrier and Pluronic F68 as surfactant. Obtained nanoparticles were approximately 120 nm in size and positively charged, with a zeta potential value equal to +45 mV in twice-distilled water. Cationic SLN were able to form stable complexes with DNA and to protect DNA against DNase I digestion. The SLN–DNA complexes were characterized by mean diameter and zeta potential measurements. In vitro studies on human liver cancer cells demonstrated a very low degree of toxicity of both SLN and SLN–DNA complexes. Further, SLN–DNA complexes were able to promote transfection of liver cancer cells. These data suggest that our cationic SLN may be potentially useful for gene therapy.
International Journal of Pharmaceutics | 2011
Emanuela Fabiola Craparo; Girolamo Teresi; Maria Luisa Bondì; Mariano Licciardi; Gennara Cavallaro
A novel drug delivery system for beclomethasone dipropionate (BDP) has been constructed through self-assembly of a pegylated phospholipid-polyaminoacid conjugate. This copolymer was obtained by chemical reaction of α,β-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol)2000] (DSPE-PEG(2000)-NH(2)). Benefiting from the amphiphilic structure with the hydrophilic shell based on both PHEA and PEG and many hydrophobic stearoyl tails, PHEA-PEG(2000)-DSPE copolymer was able to self assemble into micelles in aqueous media above a concentration of 1.23 × 10(-7)M, determined by fluorescence studies. During the self-assembling process in aqueous solution, these structures were able to incorporate BDP, with a drug loading (DL) equal to 3.0 wt%. Once the empty and BDP-loaded micelles were prepared, a deep physicochemical characterization was carried out, including the evaluation of mean size, PDI, ζ potential, morphology and storage stability. Moreover, the excellent biocompatibility of both empty and drug-loaded systems was evaluated either on human bronchial epithelium (16HBE) or on red blood cells. The cellular uptake of BDP, free or blended into PHEA-PEG(2000)-DSPE micelles, was also evaluated, evidencing a high drug internalization when entrapped into these nanocarriers and demonstrating their potential for delivering hydrophobic drugs in the treatment of pulmonary diseases.
CNS Neuroscience & Therapeutics | 2011
Emanuela Fabiola Craparo; Maria Luisa Bondì; Giovanna Pitarresi; Gennara Cavallaro
Brain delivery is one of the major challenges for the neuropharmaceutical industry since an alarming increase in brain disease incidence is going on. Despite major advances in neuroscience, many potential therapeutic agents are denied access to the central nervous system (CNS) because of the existence of a physiological low permeable barrier, the blood–brain barrier (BBB). To obtain an improvement of drug CNS performance, sophisticated approaches such as nanoparticulate systems are rapidly developing. Many recent data demonstrate that drugs could be transported successfully into the brain using colloidal systems after i.v. injection by several mechanisms such as endocytosis or P‐glycoprotein inhibition. This review summarizes the main brain targeted nanoparticulate carriers such as liposomes, lipid nanoparticles, polymeric nanoparticles, and micelles with great potential in drug delivery into the CNS.
International Journal of Pharmaceutics | 2014
Emanuela Fabiola Craparo; Carla Sardo; Rosa Serio; Maria Grazia Zizzo; Maria Luisa Bondì; Gaetano Giammona; Gennara Cavallaro
In this paper, we describe the preparation of liver-targeted polymeric micelles potentially able to carry sorafenib to hepatocytes for treatment of hepatocarcinoma (HCC), exploiting the presence of carbohydrate receptors, ASGPR. These micelles were prepared starting from a galactosylated polylactide-polyaminoacid conjugate. This latter was obtained by chemical reaction of α,β-poly(N-2-hydroxyethyl) (2-aminoethylcarbamate)-d,l-aspartamide (PHEA-EDA) with polylactic acid (PLA), and subsequent reaction with lactose, leading to PHEA-EDA-PLA-GAL copolymer. Liver-targeted sorafenib-loaded micelles were obtained in aqueous media at low PHEA-EDA-PLA-GAL copolymer concentration value with nanometer size and slightly positive zeta potential. Biodistribution studies on mice demonstrated, after oral administration of sorafenib loaded PHEA-EDA-PLA-GAL micelles, the preferential sorafenib accumulation into the liver. This finding raises hope in terms of future drug delivery strategy of sorafenib-loaded micelles targeted to the liver for the HCC treatment.
World Journal of Gastroenterology | 2014
Lydia Giannitrapani; Maurizio Soresi; Maria Luisa Bondì; Giuseppe Montalto; Melchiorre Cervello
Chronic liver diseases represent a major global health problem both for their high prevalence worldwide and, in the more advanced stages, for the limited available curative treatment options. In fact, when lesions of different etiologies chronically affect the liver, triggering the fibrogenesis mechanisms, damage has already occurred and the progression of fibrosis will have a major clinical impact entailing severe complications, expensive treatments and death in end-stage liver disease. Despite significant advances in the understanding of the mechanisms of liver fibrinogenesis, the drugs used in liver fibrosis treatment still have a limited therapeutic effect. Many drugs showing potent antifibrotic activities in vitro often exhibit only minor effects in vivo because insufficient concentrations accumulate around the target cell and adverse effects result as other non-target cells are affected. Hepatic stellate cells play a critical role in liver fibrogenesis , thus they are the target cells of antifibrotic therapy. The application of nanoparticles has emerged as a rapidly evolving area for the safe delivery of various therapeutic agents (including drugs and nucleic acid) in the treatment of various pathologies, including liver disease. In this review, we give an overview of the various nanotechnology approaches used in the treatment of liver fibrosis.
Biomacromolecules | 2012
Clelia Dispenza; Maria Antonietta Sabatino; Natascia Grimaldi; Donatella Bulone; Maria Luisa Bondì; Maria Pia Casaletto; Salvatrice Rigogliuso; Giorgia Adamo; Giulio Ghersi
A scalable, single-step, synthetic approach for the manufacture of biocompatible, functionalized micro- and nanogels is presented. In particular, poly(N-vinyl pyrrolidone)-grafted-(aminopropyl)methacrylamide microgels and nanogels were generated through e-beam irradiation of PVP aqueous solutions in the presence of a primary amino-group-carrying monomer. Particles with different hydrodynamic diameters and surface charge densities were obtained at the variance of the irradiation conditions. Chemical structure was investigated by different spectroscopic techniques. Fluorescent variants were generated through fluorescein isothiocyanate attachment to the primary amino groups grafted to PVP, to both quantify the available functional groups for bioconjugation and follow nanogels localization in cell cultures. Finally, a model protein, bovine serum albumin, was conjugated to the nanogels to demonstrate the attachment of biologically relevant molecules for targeting purposes in drug delivery. The described approach provides a novel strategy to fabricate biohybrid nanogels with a very promising potential in nanomedicine.