Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Battaglia is active.

Publication


Featured researches published by Giuseppe Battaglia.


Journal of Cerebral Blood Flow and Metabolism | 2001

Metabotropic Glutamate Receptor Subtypes as Targets for Neuroprotective Drugs

Valeria Bruno; Giuseppe Battaglia; Agata Copani; Mara D'Onofrio; P. Di Iorio; Antonio De Blasi; Daniela Melchiorri; Peter J. Flor; Ferdinando Nicoletti

Metabotropic glutamate (mGlu) receptors have been considered as potential targets for neuroprotective drugs, but the lack of specific drugs has limited the development of neuroprotective strategies in experimental models of acute or chronic central nervous system (CNS) disorders. The advent of potent and centrally available subtype-selective ligands has overcome this limitation, leading to an extensive investigation of the role of mGlu receptor subtypes in neurodegeneration during the last 2 years. Examples of these drugs are the noncompetitive mGlu1 receptor antagonists, CPCCOEt and BAY-36-7620; the noncompetitive mGlu5 receptor antagonists, 2-methyl-6-(phenylethynyl)pyridine, SIB-1893, and SIB-1757; and the potent mGlu2/3 receptor agonists, LY354740 and LY379268. Pharmacologic blockade of mGlu1 or mGlu5 receptors or pharmacologic activation of mGlu2/3 or mGlu4/7/8 receptors produces neuroprotection in a variety of in vitro or in vivo models. MGlu1 receptor antagonists are promising drugs for the treatment of brain ischemia or for the prophylaxis of neuronal damage induced by synaptic hyperactivity. MGlu5 receptor antagonists may limit neuronal damage induced by a hyperactivity of N-methyl-d-aspartate (NMDA) receptors, because mGlu5 and NMDA receptors are physically and functionally connected in neuronal membranes. A series of observations suggest a potential application of mGlu5 receptor antagonists in chronic neurodegenerative disorders, such as amyotrophic lateral sclerosis and Alzheimer disease. MGlu2/3 receptor agonists inhibit glutamate release, but also promote the synthesis and release of neurotrophic factors in astrocytes. These drugs may therefore have a broad application as neuroprotective agents in a variety of CNS disorders. Finally, mGlu4/7/8 receptor agonists potently inhibit glutamate release and have a potential application in seizure disorders. The advantage of all these drugs with respect to NMDA or AMPA receptor agonists derives from the evidence that mGlu receptors do not “mediate,” but rather “modulate” excitatory synaptic transmission. Therefore, it can be expected that mGlu receptor ligands are devoid of the undesirable effects resulting from the inhibition of excitatory synaptic transmission, such as sedation or an impairment of learning and memory.


Neuropharmacology | 2003

(-)-PHCCC, a positive allosteric modulator of mGluR4: characterization, mechanism of action, and neuroprotection

M. Maj; Valeria Bruno; Zorica Dragic; R. Yamamoto; Giuseppe Battaglia; Werner Inderbitzin; Natacha Stoehr; T. Stein; Fabrizio Gasparini; Ivo Vranesic; Rainer Kuhn; Ferdinando Nicoletti; Peter J. Flor

Group-III metabotropic glutamate receptors (mGluR4, -6, -7, and -8) modulate neurotoxicity of excitatory amino acids and beta-amyloid-peptide (betaAP), as well as epileptic convulsions, most likely via presynaptic inhibition of glutamatergic neurotransmission. Due to the lack of subtype-selective ligands for group-III receptors, we previously utilized knock-out mice to identify mGluR4 as the primary receptor mediating neuroprotection of unselective group-III agonists such as L-AP(4) or (+)-PPG, whereas mGluR7 is critical for anticonvulsive effects. In a recent effort to find group-III subtype-selective drugs we identified (+/-)-PHCCC as a positive allosteric modulator for mGluR4. This compound increases agonist potency and markedly enhances maximum efficacy and, at higher concentrations, directly activates mGluR4 with low efficacy. All the activity of (+/-)-PHCCC resides in the (-)-enantiomer, which is inactive at mGluR2, -3, -5a, -6, -7b and -8a, but shows partial antagonist activity at mGluR1b (30% maximum antagonist efficacy). Chimeric receptor studies showed that the binding site of (-)-PHCCC is localized in the transmembrane region.Finally, (-)-PHCCC showed neuroprotection against betaAP- and NMDA-toxicity in mixed cultures of mouse cortical neurons. This neuroprotection was additive to that induced by the highly efficacious mGluR1 antagonist CPCCOEt and was blocked by MSOP, a group-III mGluR antagonist. Our data provide evidence for a novel pharmacological site on mGluR4, which may be used as a target-site for therapeutics.


Neuropharmacology | 1999

Neuroprotective activity of the potent and selective mGlu1a metabotropic glutamate receptor antagonist, (+)-2-methyl-4 carboxyphenylglycine (LY367385) : comparison with LY357366, a broader spectrum antagonist with equal affinity for mGlu1a and mGlu5 receptors

Valeria Bruno; Giuseppe Battaglia; A.E. Kingston; Michael J. O'Neill; M. V. Catania; R. Di Grezia; F. Nicoletti

(+)-2-Methyl-4-carboxyphenylglycine (LY367385), a potent and selective antagonist of mGlu1a metabotropic glutamate receptors, was neuroprotective in the following in vitro and in vivo models of excitotoxic death: (i) mixed cultures of murine cortical cells transiently exposed to N-methyl-D-aspartate (NMDA); (ii) rats monolaterally infused with NMDA into the caudate nucleus; and (iii) gerbils subjected to transient global ischemia. We have compared the activity of LY367385 with that of the novel compound (+/-)-alpha-thioxantylmethyl-4-carboxyphenylglycine (LY367366), which antagonizes both mGlu1a and -5 receptors at low micromolar concentrations, but also recruits other subtypes at higher concentrations. Although LY367366 was neuroprotective, it was in general less efficacious than LY357385, suggesting that inhibition of mGlu1 receptors is sufficient to confer significant neuroprotection. We conclude that endogenous activation of mGlu1a receptors (or perhaps other mGlu1 receptor splice variants) contributes to the development of neuronal degeneration of excitotoxic origin.


Neuropharmacology | 2000

Selective blockade of metabotropic glutamate receptor subtype 5 is neuroprotective

Valeria Bruno; I. Ksiazek; Giuseppe Battaglia; S. Lukic; T. Leonhardt; D. Sauer; Fabrizio Gasparini; Rainer Kuhn; Ferdinando Nicoletti; Peter J. Flor

We have used potent and selective non-competitive antagonists of metabotropic glutamate receptor subtype 5 (mGlu5) -- 2-methyl-6-phenylethynylpyridine (MPEP), [6-methyl-2-(phenylazo)-3-pyridinol] (SIB-1757) and [(E)-2-methyl-6-(2-phenylethenyl)pyridine] (SIB-1893) - to examine whether endogenous activation of this particular metabotropic glutamate receptor subtype contributes to neuronal degeneration. In cortical cultures challenged with N-methyl-D-aspartate (NMDA), all three mGlu5 receptor antagonists were neuroprotective. The effect of MPEP was highly specific because the close analogue, 3-methyl-6-phenylethynylpyridine (iso-MPEP), which did not antagonize heterologously expressed mGlu5 receptors, was devoid of activity on NMDA toxicity. Neuroprotection by mGlu5 receptor antagonists was also observed in cortical cultures challenged with a toxic concentration of beta-amyloid peptide. We have also examined the effect of mGlu5 receptor antagonists in in vivo models of excitotoxic degeneration. MPEP and SIB-1893 were neuroprotective against neuronal damage induced by intrastriatal injection of NMDA or quinolinic acid. These results indicate that mGlu5 receptors represent a suitable target for novel neuroprotective agents of potential application in neurodegenerative disorders.


Cell Death & Differentiation | 2005

Endogenous activation of metabotropic glutamate receptors supports the proliferation and survival of neural progenitor cells.

V. Di Giorgi-Gerevini; Daniela Melchiorri; Giuseppe Battaglia; Lucia Ricci-Vitiani; C. Ciceroni; Carla L. Busceti; Francesca Biagioni; Luisa Iacovelli; A. M. Canudas; Eugenio Parati; R De Maria; Ferdinando Nicoletti

The use of neural progenitor cells (NPCs) is limited by the incomplete knowledge of the extracellular signals regulating their proliferation and survival. We report that cultured mouse NPCs express functional mGlu3 and mGlu5 metabotropic glutamate receptors. Pharmacological blockade of both receptors reduced NPC proliferation and survival, whereas activation of mGlu5 receptors substantially enhanced cell proliferation. Adult mice lacking mGlu5 receptors or treated with mGlu5 or mGlu3 receptor antagonists showed a dramatic reduction in the number of dividing neuroprogenitors present in the subventricular zone and in the dentate gyrus of the hippocampus. These data disclose a novel function of mGlu receptors and offer new potential strategies for the optimization of cell replacement therapy in neurodegenerative disorders.


Journal of Neurochemistry | 2003

Methamphetamine produces neuronal inclusions in the nigrostriatal system and in PC12 cells

Francesco Fornai; Paola Lenzi; Marco Gesi; Paola Soldani; Michela Ferrucci; Gloria Lazzeri; L Capobianco; Giuseppe Battaglia; Antonio De Blasi; Ferdinando Nicoletti; Antonio Paparelli

Mice treated with the psychostimulant methamphetamine (MA) showed the appearance of intracellular inclusions in the nucleus of medium sized striatal neurones and cytoplasm of neurones of the substantia nigra pars compacta but not in the frontal cortex. All inclusions contained ubiquitin, the ubiquitin activating enzyme (E1), the ubiquitin protein ligase (E3‐like, parkin), low and high molecular weight heat shock proteins (HSP 40 and HSP 70). Inclusions found in nigral neurones stained for α‐synuclein, a proteic hallmark of Lewy bodies that are frequently observed in Parkinsons disease and other degenerative disorders. However, differing from classic Lewy bodies, MA‐induced neuronal inclusions appeared as multilamellar bodies resembling autophagic granules. Methamphetamine reproduced this effect in cultured PC12 cells, which offered the advantage of a simple cellular model for the study of the molecular determinants of neuronal inclusions. PC12 inclusions, similar to those observed in nigral neurones, were exclusively localized in the cytoplasm and stained for α‐synuclein. Time‐dependent experiments showed that inclusions underwent a progressive fusion of the external membranes and developed an electrodense core. Inhibition of dopamine synthesis by α‐methyl‐p‐tyrosine (αMpT), or administering the antioxidant S‐apomorphine largely attenuated the formation of inclusions in PC12 cells exposed to MA. Inclusions were again observed when αMpT‐treated cells were loaded with l‐DOPA, which restored intracellular dopamine levels.


Advances in Experimental Medicine and Biology | 2003

Neuroprotective activity of metabotropic glutamate receptor ligands

Peter J. Flor; Giuseppe Battaglia; Ferdinando Nicoletti; Fabrizio Gasparini; Valeria Bruno

Metabotropic glutamate receptors form a family of currently eight subtypes (mGluR1-8), subdivided into three groups (I-III). Activation of group-II (mGluR2 and -3) or group-III metabotropic glutamate receptors (mGluR4, -6, -7 and -8) has been established to be neuroprotective in vitro and in vivo. In contrast, group-I mGluRs (mGluR1 and -5) need to be antagonized in order to evoke protection. Initially, all neuroprotective mGluR ligands were analogues of L-glutamate. Those compounds were valuable to demonstrate protection in vitro, but showed limited applicability in animal models, particularly in chronic tests, due to low blood-brain-barrier penetration. Recently, systemically active and more potent and selective ligands became available, e.g., the group-II mGluR agonists LY354740 and LY379268 or group-I antagonists like MPEP (mGluR5-selective) and BAY36-7620 (mGluR1-selective). This new generation of pharmacological agents allows a more stringent assessment of the role of individual mGluR-subtypes or groups of receptors in various nervous system disorders, including ischaemia-induced brain damage, traumatic brain injury, Huntingtons and Parkinsons-like pathology or epilepsy. Moreover, the use of genetically modified animals (e.g., knock-out mice) is starting to shed light on specific functions of mGluR-subtypes in experimental neuropathologies.


Journal of Neuroimmunology | 2000

Expression of metabotropic glutamate receptors in murine thymocytes and thymic stromal cells

Marianna Storto; Ugo de Grazia; Giuseppe Battaglia; Maria Pia Felli; Marella Maroder; Alberto Gulino; Giuseppe Ragona; Ferdinando Nicoletti; Isabella Screpanti; Luigi Frati; Antonella Calogero

RT-PCR combined with immunoblotting showed the expression of group-I (mGlu1 and 5) and group-II (mGlu2 and 3) metabotropic glutamate receptors in whole mouse thymus, isolated thymocytes and TC-1S thymic stromal cell line. Cytofluorimetric analysis showed that mGlu-5 receptors were absent in CD4(-)/CD8(-) but present in more mature CD4(+) CD8(+) and CD4(+)CD8(-) thymocytes. mGlu-1a receptors showed an opposite pattern of expression with respect to mGlu5, whereas mGlu2/3 receptor expression did not differ between double negative and double positive cells. mGlu receptors expressed in both thymic cell components were functional, as indicated by measurements of polyphosphoinositide hydrolysis or cAMP formation. These data suggest a possible role for mGlu receptor signalling in the thymus.


European Journal of Neuroscience | 2001

An activity-dependent switch from facilitation to inhibition in the control of excitotoxicity by group I metabotropic glutamate receptors.

Valeria Bruno; Giuseppe Battaglia; Agata Copani; Virtudes M. Cespédes; Maria F. Galindo; Valentín Ceña; José Sánchez-Prieto; Fabrizio Gasparini; Rainer Kuhn; Peter J. Flor; Ferdinando Nicoletti

Activation of group I metabotropic glutamate receptors (mGlu1 or ‐5 receptors) is known to either enhance or attenuate excitotoxic neuronal death depending on the experimental conditions. We have examined the possibility that these receptors may switch between two different functional modes in regulating excitotoxicity. In mixed cultures of cortical cells, the selective mGlu1/5 agonist, 3,5‐dihydroxyphenylglycine (DHPG), amplified neurodegeneration induced by a toxic pulse of NMDA. This effect was observed when DHPG was either combined with NMDA or transiently applied to the cultures prior to the NMDA pulse. However, two consecutive applications of DHPG consistently produced neuroprotection. Similar effects were observed with DHPG or quisqualate (a potent agonist of mGlu1/5 receptors) in pure cultures of cortical neurons virtually devoid of astrocytes. In cultures of hippocampal pyramidal neurons, however, only protective effects of DHPG were seen suggesting that, in these particular cultures, group I mGlu receptors were endogenously switched into a ‘neuroprotective mode’. The characteristics of the activity‐dependent switch from facilitation to inhibition were examined in mixed cultures of cortical cells. The switch in the response to DHPG was observed when the two applications of the drug were separated by an interval ranging from 1–45 min, but was lost when the interval was extended to 90 min. In addition, this phenomenon required the initial activation of mGlu5 receptors (as indicated by the use of subtype‐selective antagonists) and was mediated by the activation of protein kinase C. We conclude that group I mGlu receptors are subjected to an activity‐dependent switch in regulating excitotoxic neuronal death and, therefore, the recent ‘history’ of these receptors is critical for the response to agonists or antagonists.


Journal of Neurochemistry | 2003

Pharmacological blockade of mGlu2/3 metabotropic glutamate receptors reduces cell proliferation in cultured human glioma cells

Mara D'Onofrio; Antonietta Arcella; Valeria Bruno; Richard Teke Ngomba; Giuseppe Battaglia; Vincenza Lombari; Giuseppe Ragona; Antonella Calogero; Ferdinando Nicoletti

Glial cell proliferation in culture is under the control of metabotropic glutamate (mGlu) receptors. We have examined whether this control extends to human glioma cells. Primary cultures were prepared from surgically removed human glioblastomas. RT‐PCR combined with western blot analysis showed that most of the cultures (eight out of 11) expressed group‐II mGlu receptors. In two selected cultures (MZC‐12 and FCN‐9), the mGlu2/3 receptor antagonist, LY341495, slowed cell proliferation when applied to the growth medium from the second day after plating. This effect was reversible because linear cell growth was restored after washing out the drug. LY341495 reduced glioma cell proliferation at concentrations lower than 100 nm, which are considered as selective for mGlu2/3 receptors. In addition, its action was mimicked by the putative mGlu2/3 receptor antagonist (2S)‐α‐ethylglutamate. The anti‐proliferative effect of LY341495 was confirmed by measuring [methyl‐3H]‐thymidine incorporation in cultures arrested in G0 phase of the cell cycle and then stimulated to proliferate by the addition of 10% fetal calf serum or 100 ng/mL of epidermal growth factor (EGF). In cultures treated with EGF, LY341495 was also able to reduce the stimulation of the mitogen‐activated protein kinase (MAPK) pathway, as well as the induction of cyclin D1. Both effects, as well as decreased [methyl‐3H]‐thymidine incorporation, were partially reduced by co‐addition of the potent mGlu2/3 receptor agonist, LY379268. We conclude that activation of group‐II mGlu receptors supports the growth of human glioma cells in culture and that antagonists of these receptors should be tested for their ability to reduce tumour growth in vivo.

Collaboration


Dive into the Giuseppe Battaglia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valeria Bruno

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Daniela Melchiorri

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Peter J. Flor

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar

Carla L. Busceti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge