Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Ciossani is active.

Publication


Featured researches published by Giuseppe Ciossani.


Journal of the American Chemical Society | 2010

Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2

Claudia Binda; Sergio Valente; Mauro Romanenghi; Simona Pilotto; Roberto Cirilli; Aristotele Karytinos; Giuseppe Ciossani; Oronza A. Botrugno; Federico Forneris; Maria Tardugno; Dale E. Edmondson; Saverio Minucci; Andrea Mattevi; Antonello Mai

LSD1 and LSD2 histone demethylases are implicated in a number of physiological and pathological processes, ranging from tumorigenesis to herpes virus infection. A comprehensive structural, biochemical, and cellular study is presented here to probe the potential of these enzymes for epigenetic therapies. This approach employs tranylcypromine as a chemical scaffold for the design of novel demethylase inhibitors. This drug is a clinically validated antidepressant known to target monoamine oxidases A and B. These two flavoenzymes are structurally related to LSD1 and LSD2. Mechanistic and crystallographic studies of tranylcypromine inhibition reveal a lack of selectivity and differing covalent modifications of the FAD cofactor depending on the enantiomeric form. These findings are pharmacologically relevant, since tranylcypromine is currently administered as a racemic mixture. A large set of tranylcypromine analogues were synthesized and screened for inhibitory activities. We found that the common evolutionary origin of LSD and MAO enzymes, despite their unrelated functions and substrate specificities, is reflected in related ligand-binding properties. A few compounds with partial enzyme selectivity were identified. The biological activity of one of these new inhibitors was evaluated with a cellular model of acute promyelocytic leukemia chosen since its pathogenesis includes aberrant activities of several chromatin modifiers. Marked effects on cell differentiation and an unprecedented synergistic activity with antileukemia drugs were observed. These data demonstrate that these LSD1/2 inhibitors are of potential relevance for the treatment of promyelocytic leukemia and, more generally, as tools to alter chromatin state with promise of a block of tumor progression.


Journal of Biological Chemistry | 2009

A Novel Mammalian Flavin-dependent Histone Demethylase

Aristotele Karytinos; Federico Forneris; Antonella Profumo; Giuseppe Ciossani; Elena Battaglioli; Claudia Binda; Andrea Mattevi

Methylation of Lys residues on histone proteins is a well known and extensively characterized epigenetic mark. The recent discovery of lysine-specific demethylase 1 (LSD1) demonstrated that lysine methylation can be dynamically controlled. Among the histone demethylases so far identified, LSD1 has the unique feature of functioning through a flavin-dependent amine oxidation reaction. Data base analysis reveals that mammalian genomes contain a gene (AOF1, for amine-oxidase flavin-containing domain 1) that is homologous to the LSD1-coding gene. Here, we demonstrate that the protein encoded by AOF1 represents a second mammalian flavin-dependent histone demethylase, named LSD2. The new demethylase is strictly specific for mono- and dimethylated Lys4 of histone H3, recognizes a long stretch of the H3 N-terminal tail, senses the presence of additional epigenetic marks on the histone substrate, and is covalently inhibited by tranylcypromine. As opposed to LSD1, LSD2 does not form a biochemically stable complex with the C-terminal domain of the corepressor protein CoREST. Furthermore, LSD2 contains a CW-type zinc finger motif with potential zinc-binding sites that are not present in LSD1. We conclude that mammalian LSD2 represents a new flavin-dependent H3-Lys4 demethylase that features substrate specificity properties highly similar to those of LSD1 but is very likely to be part of chromatin-remodeling complexes that are distinct from those involving LSD1.


ACS Chemical Biology | 2013

Protein recognition by short peptide reversible inhibitors of the chromatin-modifying LSD1/CoREST lysine demethylase.

Marcello Tortorici; Maria Teresa Borrello; Maria Tardugno; Laurent R. Chiarelli; Simona Pilotto; Giuseppe Ciossani; Nadeem A. Vellore; Sarah G. Bailey; Jonathan Cowan; Maria A. O'Connell; Simon J. Crabb; Graham Packham; Antonello Mai; Riccardo Baron; A. Ganesan; Andrea Mattevi

The combinatorial assembly of protein complexes is at the heart of chromatin biology. Lysine demethylase LSD1(KDM1A)/CoREST beautifully exemplifies this concept. The active site of the enzyme tightly associates to the N-terminal domain of transcription factors of the SNAIL1 family, which therefore can competitively inhibit the binding of the N-terminal tail of the histone substrate. Our enzymatic, crystallographic, spectroscopic, and computational studies reveal that LSD1/CoREST can bind to a hexapeptide derived from the SNAIL sequence through recognition of a positively charged α-helical turn that forms upon binding to the enzyme. Variations in sequence and length of this six amino acid ligand modulate affinities enabling the same binding site to differentially interact with proteins that exert distinct biological functions. The discovered short peptide inhibitors exhibit antiproliferative activities and lay the foundation for the development of peptidomimetic small molecule inhibitors of LSD1.


Molecular and Cellular Biology | 2014

Differential Properties of Transcriptional Complexes Formed by the CoREST Family

Álvaro P. Barrios; Andrea V. Gómez; Julián Esteban Sáez; Giuseppe Ciossani; Emanuela Toffolo; Elena Battaglioli; Andrea Mattevi; María Estela Andrés

ABSTRACT Mammalian genomes harbor three CoREST genes. rcor1 encodes CoREST (CoREST1), and the paralogues rcor2 and rcor3 encode CoREST2 and CoREST3, respectively. Here, we describe specific properties of transcriptional complexes formed by CoREST proteins with the histone demethylase LSD1/KDM1A and histone deacetylases 1 and 2 (HDAC1/2) and the finding that all three CoRESTs are expressed in the adult rat brain. CoRESTs interact equally strongly with LSD1/KDM1A. Structural analysis shows that the overall conformation of CoREST3 is similar to that of CoREST1 complexed with LSD1/KDM1A. Nonetheless, transcriptional repressive capacity of CoREST3 is lower than that of CoREST1, which correlates with the observation that CoREST3 leads to a reduced LSD1/KDM1A catalytic efficiency. Also, CoREST2 shows a lower transcriptional repression than CoREST1, which is resistant to HDAC inhibitors. CoREST2 displays lower interaction with HDAC1/2, which is barely present in LSD1/KDM1A-CoREST2 complexes. A nonconserved leucine in the first SANT domain of CoREST2 severely weakens its association with HDAC1/2. Furthermore, CoREST2 mutants with increased HDAC1/2 interaction and those without HDAC1/2 interaction exhibit equivalent transcriptional repression capacities, indicating that CoREST2 represses in an HDAC-independent manner. In conclusion, differences among CoREST proteins are instrumental in the modulation of protein-protein interactions and catalytic activities of LSD1/KDM1A-CoREST-HDAC complexes, fine-tuning gene expression regulation.


PLOS Computational Biology | 2013

Expanding the druggable space of the LSD1/CoREST epigenetic target: new potential binding regions for drug-like molecules, peptides, protein partners, and chromatin.

James C. Robertson; Nate C. Hurley; Marcello Tortorici; Giuseppe Ciossani; Maria Teresa Borrello; Nadeem A. Vellore; A. Ganesan; Andrea Mattevi; Riccardo Baron

Lysine specific demethylase-1 (LSD1/KDM1A) in complex with its corepressor protein CoREST is a promising target for epigenetic drugs. No therapeutic that targets LSD1/CoREST, however, has been reported to date. Recently, extended molecular dynamics (MD) simulations indicated that LSD1/CoREST nanoscale clamp dynamics is regulated by substrate binding and highlighted key hinge points of this large-scale motion as well as the relevance of local residue dynamics. Prompted by the urgent need for new molecular probes and inhibitors to understand LSD1/CoREST interactions with small-molecules, peptides, protein partners, and chromatin, we undertake here a configurational ensemble approach to expand LSD1/CoREST druggability. The independent algorithms FTMap and SiteMap and our newly developed Druggable Site Visualizer (DSV) software tool were used to predict and inspect favorable binding sites. We find that the hinge points revealed by MD simulations at the SANT2/Tower interface, at the SWIRM/AOD interface, and at the AOD/Tower interface are new targets for the discovery of molecular probes to block association of LSD1/CoREST with chromatin or protein partners. A fourth region was also predicted from simulated configurational ensembles and was experimentally validated to have strong binding propensity. The observation that this prediction would be prevented when using only the X-ray structures available (including the X-ray structure bound to the same peptide) underscores the relevance of protein dynamics in protein interactions. A fifth region was highlighted corresponding to a small pocket on the AOD domain. This study sets the basis for future virtual screening campaigns targeting the five novel regions reported herein and for the design of LSD1/CoREST mutants to probe LSD1/CoREST binding with chromatin and various protein partners.


European Journal of Medicinal Chemistry | 2015

Pure enantiomers of benzoylamino-tranylcypromine: LSD1 inhibition, gene modulation in human leukemia cells and effects on clonogenic potential of murine promyelocytic blasts

Sergio Valente; Veronica Rodriguez; Ciro Mercurio; Paola Vianello; Bruna Saponara; Roberto Cirilli; Giuseppe Ciossani; Donatella Labella; Biagina Marrocco; Daria Monaldi; Giovanni Ruoppolo; Mats Tilset; Oronza A. Botrugno; Paola Dessanti; Saverio Minucci; Andrea Mattevi; Mario Varasi; Antonello Mai

The pure enantiomers of the N-(2-, 3-, and 4-(2-aminocyclopropyl)phenyl)benzamides hydrochlorides 11a-j were prepared and tested against LSD1 and MAO enzymes. The evaluation of the regioisomers 11a-j highlighted a net increase of the anti-LSD1 potency by shifting the benzamide moiety from ortho to meta and mainly to para position of tranylcypromine phenyl ring, independently from their trans or cis stereochemistry. In particular, the para-substituted 11a,b (trans) and 11g,h (cis) compounds displayed LSD1 and MAO-A inhibition at low nanomolar levels, while were less potent against MAO-B. The meta analogs 11c,d (trans) and 11i,j (cis) were in general less potent, but more efficient against MAO-A than against LSD1. In cellular assays, all the para and meta enantiomers were able to inhibit LSD1 by inducing Gfi-1b and ITGAM gene expression, with 11b,c and 11g-i giving the highest effects. Moreover, 11b and 11g,h strongly inhibited the clonogenic potential of murine promyelocytic blasts.


Journal of Medicinal Chemistry | 2017

Thieno[3,2-b]pyrrole-5-carboxamides as New Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1. Part 1: High-Throughput Screening and Preliminary Exploration.

Luca Sartori; Ciro Mercurio; Federica Amigoni; Anna Cappa; Giovanni Fagá; Raimondo Fattori; Elena Legnaghi; Giuseppe Ciossani; Andrea Mattevi; Giuseppe Meroni; Loris Moretti; Valentina Cecatiello; Alessia Romussi; Florian Thaler; Paolo Trifiró; Manuela Villa; Stefania Vultaggio; Oronza A. Botrugno; Paola Dessanti; Saverio Minucci; Elisa Zagarrí; Daniele Carettoni; Lucia Iuzzolino; Mario Varasi; Paola Vianello

Lysine specific demethylase 1 KDM1A (LSD1) regulates histone methylation and it is increasingly recognized as a potential therapeutic target in oncology. We report on a high-throughput screening campaign performed on KDM1A/CoREST, using a time-resolved fluorescence resonance energy transfer (TR-FRET) technology, to identify reversible inhibitors. The screening led to 115 hits for which we determined biochemical IC50, thus identifying four chemical series. After data analysis, we have prioritized the chemical series of N-phenyl-4H-thieno[3, 2-b]pyrrole-5-carboxamide for which we obtained X-ray structures of the most potent hit (compound 19, IC50 = 2.9 μM) in complex with the enzyme. Initial expansion of this chemical class, both modifying core structure and decorating benzamide moiety, was directed toward the definition of the moieties responsible for the interaction with the enzyme. Preliminary optimization led to compound 90, which inhibited the enzyme with a submicromolar IC50 (0.162 μM), capable of inhibiting the target in cells.


Journal of Medicinal Chemistry | 2017

Thieno[3,2-b]pyrrole-5-carboxamides as New Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1. Part 2: Structure-Based Drug Design and Structure-Activity Relationship.

Paola Vianello; Luca Sartori; Federica Amigoni; Anna Cappa; Giovanni Fagá; Raimondo Fattori; Elena Legnaghi; Giuseppe Ciossani; Andrea Mattevi; Giuseppe Meroni; Loris Moretti; Valentina Cecatiello; Alessia Romussi; Florian Thaler; Paolo Trifiró; Manuela Villa; Oronza A. Botrugno; Paola Dessanti; Saverio Minucci; Stefania Vultaggio; Elisa Zagarrí; Mario Varasi; Ciro Mercurio

The balance of methylation levels at histone H3 lysine 4 (H3K4) is regulated by KDM1A (LSD1). KDM1A is overexpressed in several tumor types, thus representing an emerging target for the development of novel cancer therapeutics. We have previously described ( Part 1, DOI 10.1021.acs.jmedchem.6b01018 ) the identification of thieno[3,2-b]pyrrole-5-carboxamides as novel reversible inhibitors of KDM1A, whose preliminary exploration resulted in compound 2 with biochemical IC50 = 160 nM. We now report the structure-guided optimization of this chemical series based on multiple ligand/KDM1A-CoRest cocrystal structures, which led to several extremely potent inhibitors. In particular, compounds 46, 49, and 50 showed single-digit nanomolar IC50 values for in vitro inhibition of KDM1A, with high selectivity in secondary assays. In THP-1 cells, these compounds transcriptionally affected the expression of genes regulated by KDM1A such as CD14, CD11b, and CD86. Moreover, 49 and 50 showed a remarkable anticlonogenic cell growth effect on MLL-AF9 human leukemia cells.


ACS Medicinal Chemistry Letters | 2015

Pure Diastereomers of a Tranylcypromine-Based LSD1 Inhibitor: Enzyme Selectivity and In-Cell Studies.

Sergio Valente; Veronica Rodriguez; Ciro Mercurio; Paola Vianello; Bruna Saponara; Roberto Cirilli; Giuseppe Ciossani; Donatella Labella; Biagina Marrocco; Giovanni Ruoppolo; Oronza A. Botrugno; Paola Dessanti; Saverio Minucci; Andrea Mattevi; Mario Varasi; Antonello Mai

The pure four diastereomers (11a-d) of trans-benzyl (1-((4-(2-aminocyclopropyl)phenyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamate hydrochloride 11, previously described by us as LSD1 inhibitor, were obtained by enantiospecific synthesis/chiral HPLC separation method. Tested in LSD1 and MAO assays, 11b (S,1S,2R) and 11d (R,1S,2R) were the most potent isomers against LSD1 and were less active against MAO-A and practically inactive against MAO-B. In cells, all the four diastereomers induced Gfi-1b and ITGAM gene expression in NB4 cells, accordingly with their LSD1 inhibition, and 11b and 11d inhibited the colony forming potential in murine promyelocytic blasts.


MedChemComm | 2015

Pyrrole- and indole-containing tranylcypromine derivatives as novel lysine-specific demethylase 1 inhibitors active on cancer cells

Veronica Rodriguez; Sergio Valente; Stefano Rovida; Dante Rotili; Giulia Stazi; Alessia Lucidi; Giuseppe Ciossani; Andrea Mattevi; Oronza A. Botrugno; Paola Dessanti; Ciro Mercurio; Paola Vianello; Saverio Minucci; Mario Varasi; Antonello Mai

On the basis of previous research showing the capability of N-carbobenzyloxy-(Z-)amino acid-tranylcypromine (-TCPA) derivatives to inhibit LSD1, we inserted at the 4-amino-TCPA moiety first a Z-Pro (9) and a Z-Gly (10) residue and then, after the encouraging data obtained for 9, a pyrrole and an indole ring in which the relative N1 position carried a acetophenone, a N-phenyl/benzylacetamide, or a Z chain (11a–f and 12a–f, respectively). In both series, the Z-pyrrole and indole derivatives 11e, f and 12e, f displayed high LSD1 inhibitory activity. The compounds are able to inhibit LSD1 in NB4 cells, increasing the expression of two related genes, GFI-1b and ITGAM, and to induce cell growth arrest in the AML MB4-11 and APL NB4 cell lines.

Collaboration


Dive into the Giuseppe Ciossani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonello Mai

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Oronza A. Botrugno

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Saverio Minucci

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Ciro Mercurio

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Mario Varasi

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Paola Dessanti

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Paola Vianello

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Sergio Valente

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Biagina Marrocco

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge