Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Felice Mangiatordi is active.

Publication


Featured researches published by Giuseppe Felice Mangiatordi.


Environmental Health Perspectives | 2016

CERAPP : Collaborative Estrogen Receptor Activity Prediction Project

Kamel Mansouri; Ahmed Abdelaziz; Aleksandra Rybacka; Alessandra Roncaglioni; Alexander Tropsha; Alexandre Varnek; Alexey V. Zakharov; Andrew Worth; Ann M. Richard; Christopher M. Grulke; Daniela Trisciuzzi; Denis Fourches; Dragos Horvath; Emilio Benfenati; Eugene N. Muratov; Eva Bay Wedebye; Francesca Grisoni; Giuseppe Felice Mangiatordi; Giuseppina M. Incisivo; Huixiao Hong; Hui W. Ng; Igor V. Tetko; Ilya Balabin; Jayaram Kancherla; Jie Shen; Julien Burton; Marc C. Nicklaus; Matteo Cassotti; Nikolai Georgiev Nikolov; Orazio Nicolotti

Background: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. Objectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. Methods: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. Results: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. Conclusion: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other end points. Citation: Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, Zakharov A, Worth A, Richard AM, Grulke CM, Trisciuzzi D, Fourches D, Horvath D, Benfenati E, Muratov E, Wedebye EB, Grisoni F, Mangiatordi GF, Incisivo GM, Hong H, Ng HW, Tetko IV, Balabin I, Kancherla J, Shen J, Burton J, Nicklaus M, Cassotti M, Nikolov NG, Nicolotti O, Andersson PL, Zang Q, Politi R, Beger RD, Todeschini R, Huang R, Farag S, Rosenberg SA, Slavov S, Hu X, Judson RS. 2016. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. Environ Health Perspect 124:1023–1033; http://dx.doi.org/10.1289/ehp.1510267


International Journal of Quantitative Structure-Property Relationships (IJQSPR) | 2016

Applicability Domain for QSAR models: where theory meets reality

Domenico Gadaleta; Giuseppe Felice Mangiatordi; Marco Catto; Angelo Carotti; Orazio Nicolotti

Quantitative Structure-Activity Relationships are widely acknowledged predictive methods employed, for years, in organic and medicinal chemistry. More recently, they have assumed a central role also in the context of the explorative toxicology for the protection of environment and human health. However, their real-life application has not been always enthusiastically welcomed, being often retrospectively used and, thus, of limited importance for prospective goals. The need of making more trustable predictions has thus addressed studies on the so-called Applicability Domain, which represents the chemical space from which a model is derived and where a prediction is considered to be reliable. In the present study, the authors survey a number of approaches used to build the Applicability Domain. In particular, they will focus on strategies based on: a) physico-chemical, b) structural and c) response domains. Moreover, some examples integrating different strategies will be also discussed to meet the needs of both model developers and downstream users. KeyWoRDS Applicability Domain, Interpolation Space, QSAR, Similarity, Structural Fragments


Journal of Chemical Theory and Computation | 2012

DFT and Proton Transfer Reactions: A Benchmark Study on Structure and Kinetics

Giuseppe Felice Mangiatordi; Éric Brémond; Carlo Adamo

A significant number of different exchange correlation functionals, ranging from generalized gradient approximations to double hybrids, has been tested on a difficult playground represented by proton transfer reactions. In order to have a complete picture of their performances, both energetics and structural features have been compared and the obtained ranking compared with those issued from the standard test for kinetics (i.e., the DBH24/08 set). Among all of the functionals, the ωB97X, BMK, B1LYP, and PBE0-DH approaches are those providing a good error balance on all four trials. Beyond these figures, the obtained results allow for some general considerations, such as those on the role of Hartree-Fock exchange in reaction barriers or the relation between structure and energetics.


Drug Discovery Today | 2014

REACH and in silico methods: an attractive opportunity for medicinal chemists.

Orazio Nicolotti; Emilio Benfenati; Angelo Carotti; Domenico Gadaleta; Andrea Gissi; Giuseppe Felice Mangiatordi; Ettore Novellino

REACH, the most ambitious chemical legislation in the world, provides unprecedented opportunities for medicinal chemists. Companies must report (eco)toxicological information about their chemicals, disseminated to the public domain by the European Chemicals Agency after their registration. The availability of this wealth of new toxicological data, together with the promotion of REACH of in silico methods, appoints medicinal chemists to a leading role in the regulatory hazard assessment process. In fact, Quantitative Structure-Activity Relation ship (QSAR) models and predictive toxicology have been applied in drug design and development for decades. Here, we discuss toxicological endpoints and areas where further development is needed to provide an enlightened appraisal of this attractive new opportunity.


Journal of Cheminformatics | 2014

A generalizable definition of chemical similarity for read-across

Matteo Floris; Alberto Manganaro; Orazio Nicolotti; Ricardo Medda; Giuseppe Felice Mangiatordi; Emilio Benfenati

BackgroundMethods that provide a measure of chemical similarity are strongly relevant in several fields of chemoinformatics as they allow to predict the molecular behavior and fate of structurally close compounds. One common application of chemical similarity measurements, based on the principle that similar molecules have similar properties, is the read-across approach, where an estimation of a specific endpoint for a chemical is provided using experimental data available from highly similar compounds.ResultsThis paper reports the comparison of multiple combinations of binary fingerprints and similarity metrics for computing the chemical similarity in the context of two different applications of the read-across technique.ConclusionsOur analysis demonstrates that the classical similarity measurements can be improved with a generalizable model of similarity. The proposed approach has already been used to build similarity indices in two open-source software tools (CAESAR and VEGA) that make several QSAR models available. In these tools, the similarity index plays a key role for the assessment of the applicability domain.


Journal of Medicinal Chemistry | 2016

Exploring Basic Tail Modifications of Coumarin-Based Dual Acetylcholinesterase-Monoamine Oxidase B Inhibitors: Identification of Water-Soluble, Brain-Permeant Neuroprotective Multitarget Agents

Leonardo Pisani; Roberta Farina; Marco Catto; Rosa Maria Iacobazzi; Orazio Nicolotti; Saverio Cellamare; Giuseppe Felice Mangiatordi; Nunzio Denora; Ramón Soto-Otero; Lydia Siragusa; Cosimo Altomare; Angelo Carotti

Aiming at modulating two key enzymatic targets for Alzheimers disease (AD), i.e., acetylcholinesterase (AChE) and monoamine oxidase B (MAO B), a series of multitarget ligands was properly designed by linking the 3,4-dimethylcoumarin scaffold to 1,3- and 1,4-substituted piperidine moieties, thus modulating the basicity to improve the hydrophilic/lipophilic balance. After in vitro enzymatic inhibition assays, multipotent inhibitors showing potencies in the nanomolar and in the low micromolar range for hMAO B and eeAChE, respectively, were prioritized and evaluated in human SH-SY5Y cell-based models for their cytotoxicity and neuroprotective effect against oxidative toxins (H2O2, rotenone, and oligomycin-A). The present study led to the identification of a promising multitarget hit compound (5b) exhibiting high hMAO B inhibitory activity (IC50 = 30 nM) and good MAO B/A selectivity (selectivity index, SI = 94) along with a micromolar eeAChE inhibition (IC50 = 1.03 μM). Moreover, 5b behaves as a water-soluble, brain-permeant neuroprotective agent against oxidative insults without interacting with P-gp efflux system.


Biochimica et Biophysica Acta | 2014

A new gating site in human aquaporin-4: Insights from molecular dynamics simulations.

Domenico Alberga; Orazio Nicolotti; Gianluca Lattanzi; Grazia Paola Nicchia; Antonio Frigeri; Francesco Pisani; Valentina Benfenati; Giuseppe Felice Mangiatordi

Aquaporin-4 (AQP4) is the predominant water channel in different organs and tissues. An alteration of its physiological functioning is responsible for several disorders of water regulation and, thus, is considered an attractive target with a promising therapeutic and diagnostic potential. Molecular dynamics (MD) simulations performed on the AQP4 tetramer embedded in a bilayer of lipid molecules allowed us to analyze the role of spontaneous fluctuations occurring inside the pore. Following the approach by Hashido et al. [Hashido M, Kidera A, Ikeguchi M (2007) Biophys J 93: 373-385], our analysis on 200ns trajectory discloses three domains inside the pore as key elements for water permeation. Herein, we describe the gating mechanism associated with the well-known selectivity filter on the extracellular side of the pore and the crucial regulation ensured by the NPA motifs (asparagine, proline, alanine). Notably, on the cytoplasmic side, we find a putative gate formed by two residues, namely, a cysteine belonging to the loop D (C178) and a histidine from loop B (H95). We observed that the spontaneous reorientation of the imidazole ring of H95 acts as a molecular switch enabling H-bond interaction with C178. The occurrence of such local interaction seems to be responsible for the narrowing of the pore and thus of a remarkable decrease in water flux rate. Our results are in agreement with recent experimental observations and may represent a promising starting point to pave the way for the discovery of chemical modulators of AQP4 water permeability.


Journal of Physical Chemistry A | 2011

Modeling proton transfer in imidazole-like dimers: a density functional theory study.

Giuseppe Felice Mangiatordi; Jessica Hermet; Carlo Adamo

A detailed theoretical study of proton transfer reaction in protonated imidazole, 1,2,3-triazole, and tetrazole dimers, the basic components of polymeric membrane used in proton exchange membranes fuel cells, has been carried out. In particular, several approaches based on density functional theory have been considered and their results compared with those provided by post-HF methods. From a computational point of view, these molecules appear to be a very challenging playground also for robust and recent functionals. Indeed none of the considered approaches provide results in close agreement with the reference post-HF data and a combined BMK//B3LYP model seems the only approach able to reproduce both the energetic and the structural features. From a chemical point of view, two new mechanisms of proton transfer in tetrazole dimers have been investigated and found to be more favorable than that previously hypothesized in literature. At the same time, the theoretical results show a direct connection between the obtained proton transfer barrier and the charge localized on the transferred hydrogen.


Biochimica et Biophysica Acta | 2015

Challenging AQP4 druggability for NMO-IgG antibody binding using molecular dynamics and molecular interaction fields.

Giuseppe Felice Mangiatordi; Domenico Alberga; Lydia Siragusa; Laura Goracci; Gianluca Lattanzi; Orazio Nicolotti

Neuromyelitis optica (NMO) is a multiple sclerosis-like immunopathology disease affecting optic nerves and the spinal cord. Its pathological hallmark is the deposition of a typical immunoglobulin, called NMO-IgG, against the water channel Aquaporin-4 (AQP4). Preventing NMO-IgG binding would represent a valuable molecular strategy for a focused NMO therapy. The recent observation that aspartate in position 69 (D69) is determinant for the formation of NMO-IgG epitopes prompted us to carry out intensive Molecular Dynamics (MD) studies on a number of single-point AQP4 mutants. Here, we report a domino effect originating from the point mutation at position 69: we find that the side chain of T62 is reoriented far from its expected position leaning on the lumen of the pore. More importantly, the strength of the H-bond interaction between L53 and T56, at the basis of the loop A, is substantially weakened. These events represent important pieces of a clear-cut mechanistic rationale behind the failure of the NMO-IgG binding, while the water channel function as well as the propensity to aggregate into OAPs remains unaltered. The molecular interaction fields (MIF)-based analysis of cavities complemented MD findings indicating a putative binding site comprising the same residues determining epitope reorganization. In this respect, docking studies unveiled an intriguing perspective to address the future design of small drug-like compounds against NMO. In agreement with recent experimental observations, the present study is the first computational attempt to elucidate NMO-IgG binding at the molecular level, as well as a first effort toward a less elusive AQP4 druggability.


Journal of Biological Chemistry | 2014

Identification of a point mutation impairing the binding between aquaporin-4 and neuromyelitis optica autoantibodies.

Francesco Pisani; Maria Grazia Mola; Laura Simone; Stefania Rosito; Domenico Alberga; Giuseppe Felice Mangiatordi; Gianluca Lattanzi; Orazio Nicolotti; Antonio Frigeri; Maria Svelto; Grazia Paola Nicchia

Background: Neuromyelitis optica autoantibodies target the aquaporin-4 (AQP4) aggregate named orthogonal arrays of particles (OAP). Results: Mutation of AQP4 aspartate 69 (Asp69) impairs NMO-IgG binding leaving the water channel function unaltered as well as its aggregation into OAPs. Conclusion: Asp69 is the key determinant for the formation of NMO-IgG epitopes. Significance: Such evidence provides additional clues on NMO pathogenesis. Neuromyelitis optica (NMO) is characterized by the presence of pathogenic autoantibodies (NMO-IgGs) against supra-molecular assemblies of aquaporin-4 (AQP4), known as orthogonal array of particles (OAPs). NMO-IgGs have a polyclonal origin and recognize different conformational epitopes involving extracellular AQP4 loops A, C, and E. Here we hypothesize a pivotal role for AQP4 transmembrane regions (TMs) in epitope assembly. On the basis of multialignment analysis, mutagenesis, NMO-IgG binding, and cytotoxicity assay, we have disclosed the key role of aspartate 69 (Asp69) of TM2 for NMO-IgG epitope assembly. Mutation of Asp69 to histidine severely impairs NMO-IgG binding for 85.7% of the NMO patient sera analyzed here. Although Blue Native-PAGE, total internal reflection fluorescence microscopy, and water transport assays indicate that the OAP Asp69 mutant is similar in structure and function to the wild type, molecular dynamic simulations have revealed that the D69H mutation has the effect of altering the structural rearrangements of extracellular loop A. In conclusion, Asp69 is crucial for the spatial control of loop A, the particular molecular conformation of which enables the assembly of NMO-IgG epitopes. These findings provide additional clues for new strategies for NMO treatment and a wealth of information to better approach NMO pathogenesis.

Collaboration


Dive into the Giuseppe Felice Mangiatordi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo Adamo

PSL Research University

View shared research outputs
Researchain Logo
Decentralizing Knowledge