Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Massone is active.

Publication


Featured researches published by Giuseppe Massone.


Proceedings of SPIE | 2012

METIS: a novel coronagraph design for the Solar Orbiter mission

Silvano Fineschi; Ester Antonucci; Giampiero Naletto; Marco Romoli; D. Spadaro; G. Nicolini; Lucia Abbo; V. Andretta; A. Bemporad; Arkadiusz Berlicki; Gerardo Capobianco; Giuseppe Crescenzio; Vania Da Deppo; M. Focardi; Federico Landini; Giuseppe Massone; Marco Malvezzi; J. Dan Moses; P. Nicolosi; M. Pancrazzi; Maria Guglielmina Pelizzo; Luca Poletto; U. Schühle; S. K. Solanki; D. Telloni; L. Teriaca; M. Uslenghi

METIS (Multi Element Telescope for Imaging and Spectroscopy) METIS, the “Multi Element Telescope for Imaging and Spectroscopy”, is a coronagraph selected by the European Space Agency to be part of the payload of the Solar Orbiter mission to be launched in 2017. The mission profile will bring the Solar Orbiter spacecraft as close to the Sun as 0.3 A.U., and up to 35° out-of-ecliptic providing a unique platform for helio-synchronous observations of the Sun and its polar regions. METIS coronagraph is designed for multi-wavelength imaging and spectroscopy of the solar corona. This presentation gives an overview of the innovative design elements of the METIS coronagraph. These elements include: i) multi-wavelength, reflecting Gregorian-telescope; ii) multilayer coating optimized for the extreme UV (30.4 nm, HeII Lyman-α) with a reflecting cap-layer for the UV (121.6 nm, HI Lyman-α) and visible-light (590-650); iii) inverse external-occulter scheme for reduced thermal load at spacecraft peri-helion; iv) EUV/UV spectrograph using the telescope primary mirror to feed a 1st and 4th-order spherical varied line-spaced (SVLS) grating placed on a section of the secondary mirror; v) liquid crystals electro-optic polarimeter for observations of the visible-light K-corona. The expected performances are also presented.


Proceedings of SPIE | 2004

The VLTI fringe sensors: FINITO and PRIMA FSU

M. Gai; Serge Menardi; Stefano Cesare; Bertrand Bauvir; Donata Bonino; Leonardo Corcione; Martin Dimmler; Giuseppe Massone; François Reynaud; Anders Wallander

FINITO is the first generation VLTI fringe sensor, optimised for three beam observations, recently installed at Paranal and currently used for VLTI optimisation. The PRIMA FSU is the second generation, optimised for astrometry in dual-feed mode, currently in construction. We discuss the constraints of fringe tracking at VLTI, the basic functions required for stabilised interferometric observations, and their different implementation in the two instruments, with remarks on the most critical technical aspects. We provide an estimate of the expected performance and describe some of their possible observing and calibration modes, with reference to the current scientific combiners.


Astronomy and Astrophysics | 2007

Nearby star candidates in the Torino observatory parallax program

R. L. Smart; M. G. Lattanzi; H. Jahreiß; Beatrice Bucciarelli; Giuseppe Massone

Aims. Candidates with suspect distances from the Catalog of Nearby Stars were included in the Torino Observatory Parallax Program with the goal to clarify their membership in that catalog. Methods. Observations of the objects were made over the period 1996-2001 on the 1.05 m Torino telescope. The trigonometric parallaxes and proper motions were determined using standard techniques. Results. Of the 22 objects examined, 11 are within the 25 pc horizon of the Catalog of Nearby Stars. The remaining objects are either misclassified, sub-dwarfs rather than main sequence dwarfs with consequently overestimated photometric distances, or objects with published trigonometric parallaxes that are incorrect.


Proceedings of the SPIE | 2012

Multi Element Telescope for Imaging and Spectroscopy (METIS) coronagraph for the Solar Orbiter mission

Ester Antonucci; Silvano Fineschi; Giampiero Naletto; Marco Romoli; D. Spadaro; G. Nicolini; P. Nicolosi; Lucia Abbo; V. Andretta; A. Bemporad; F. Auchère; Arkadiusz Berlicki; R. Bruno; Gerardo Capobianco; A. Ciaravella; Giuseppe Crescenzio; V. Da Deppo; Raffaella D'Amicis; M. Focardi; Fabio Frassetto; P. Heinzel; P. L. Lamy; Federico Landini; Giuseppe Massone; Marco Malvezzi; John Daniel Moses; M. Pancrazzi; Maria Guglielmina Pelizzo; Luca Poletto; U. Schühle

METIS, the “Multi Element Telescope for Imaging and Spectroscopy”, is a coronagraph selected by the European Space Agency to be part of the payload of the Solar Orbiter mission to be launched in 2017. The unique profile of this mission will allow 1) a close approach to the Sun (up to 0.28 A.U.) thus leading to a significant improvement in spatial resolution; 2) quasi co-rotation with the Sun, resulting in observations that nearly freeze for several days the large-scale outer corona in the plane of the sky and 3) unprecedented out-of-ecliptic view of the solar corona. This paper describes the experiment concept and the observational tools required to achieve the science drivers of METIS. METIS will be capable of obtaining for the first time: • simultaneous imaging of the full corona in polarized visible-light (590-650 nm) and narrow-band ultraviolet HI Lyman α (121.6 nm); • monochromatic imaging of the full corona in the extreme ultraviolet He II Lyman α (30.4 nm); • spectrographic observations of the HI and He II Ly α in corona. These measurements will allow a complete characterization of the three most important plasma components of the corona and the solar wind, that is, electrons, hydrogen, and helium. This presentation gives an overview of the METIS imaging and spectroscopic observational capabilities to carry out such measurements.


Proceedings of SPIE | 2013

Novel space coronagraphs: METIS, a flexible optical design for multi-wavelength imaging and spectroscopy

Silvano Fineschi; Ester Antonucci; Marco Romoli; A. Bemporad; Gerardo Capobianco; Giuseppe Crescenzio; G. Nicolini; Giuseppe Massone; D. Telloni; Maurizio Focardi; F. Landini; M. Pancrazzi; Luca Poletto; Maria-G. Pelizzo; Vania Da Deppo; J. Dan Moses; V. Andretta; Giampiero Naletto; P. Nicolosi; D. Spadaro; Arkadiusz Berlicki; M. Uslenghi; Marco Malvezzi; L. Teriaca; Lucia Abbo; Enrico Magli

This presentation outlines a general optical design for coronagraphs working in both the visible-light (VL) and UV/EUV wavelength ranges by combining the use of reflective, multilayer-coated or interference-coated optics with Lyot stops. This design has been successfully applied to a sub-orbital coronagraph. Another version of this novel design for visiblelight/ EUV coronagraphs uses an inverted-occultation design in order to minimize the solar flux entering the instrument. This design has been used for the coronagraph – METIS - on board the ESA Solar Orbital mission. The current optical configuration of METIS adopted for the Solar Orbiter mission includes Visible-light and UV imaging. However, the innovative inverted-occultation concept is flexible enough that it can also accommodate a EUV spectrograph maintaining the same basic optical layout. The paper also describes the potential capabilities of the inverted-occulter coronagraph as a VL/UV imager and EUV spectrograph for future solar missions.


Proceedings of SPIE | 2015

Design status of ASPIICS, an externally occulted coronagraph for PROBA-3

Etienne Renotte; Andres Alia; A. Bemporad; Joseph Bernier; Cristina Bramanti; Steve Buckley; Gerardo Capobianco; Ileana Cernica; V. Dániel; Radoslav Darakchiev; Marcin Darmetko; Arnaud Debaize; François Denis; Richard Desselle; Lieve De Vos; Adrian Dinescu; Silvano Fineschi; Karl Fleury-Frenette; M. Focardi; A. Fumel; Damien Galano; Camille Galy; Jean-Marie Gillis; Tomasz Górski; Estelle Graas; Rafal Graczyk; Konrad Grochowski; Jean-Philippe A. Halain; Aline Hermans; Russ Howard

The “sonic region” of the Sun corona remains extremely difficult to observe with spatial resolution and sensitivity sufficient to understand the fine scale phenomena that govern the quiescent solar corona, as well as phenomena that lead to coronal mass ejections (CMEs), which influence space weather. Improvement on this front requires eclipse-like conditions over long observation times. The space-borne coronagraphs flown so far provided a continuous coverage of the external parts of the corona but their over-occulting system did not permit to analyse the part of the white-light corona where the main coronal mass is concentrated. The proposed PROBA-3 Coronagraph System, also known as ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), with its novel design, will be the first space coronagraph to cover the range of radial distances between ~1.08 and 3 solar radii where the magnetic field plays a crucial role in the coronal dynamics, thus providing continuous observational conditions very close to those during a total solar eclipse. PROBA-3 is first a mission devoted to the in-orbit demonstration of precise formation flying techniques and technologies for future European missions, which will fly ASPIICS as primary payload. The instrument is distributed over two satellites flying in formation (approx. 150m apart) to form a giant coronagraph capable of producing a nearly perfect eclipse allowing observing the sun corona closer to the rim than ever before. The coronagraph instrument is developed by a large European consortium including about 20 partners from 7 countries under the auspices of the European Space Agency. This paper is reviewing the recent improvements and design updates of the ASPIICS instrument as it is stepping into the detailed design phase.


Proceedings of SPIE | 2013

Improved stray light suppression performance for the solar orbiter/METIS inverted external occulter

Federico Landini; Marco Romoli; Gerardo Capobianco; S. Vives; Silvano Fineschi; Giuseppe Massone; Davide Loreggia; Enzo Turchi; Christophe Guillon; C. Escolle; M. Pancrazzi; M. Focardi

The Solar Orbiter/METIS visible and UV coronagraph introduces the concept of occulter inversion in solar coronagraphy. Classical externally occulted coronagraphs usually have a disk in front of the telescope entrance pupil. According to the mission requirements, in order to reduce the amount of power entering the instrument and to limit the instrument dimensions, METIS is equipped with an inverted external occulter (IEO). The IEO consists of a circular aperture on the Solar Orbiter thermal shield that acts as coronagraph entrance pupil. A spherical mirror (M0), located ~800 mm behind the IEO, rejects back the disk-light through the IEO itself. A light-tight boom connects the IEO to the M0 through the thermal shield. In order to achieve high performance in stray light suppression, the IEO design needs optimization. Due to the novelty of the concept we can only use the heritage of past space-borne coronagraph occulters as a starting point to design a dedicated occulter optimization shape. A 1.5 years long, accurate test campaign has been carried out to evaluate the best optimization configuration for the IEO. Two prototypes were manufactured to take into account the impact of the boom geometry on the stray light suppression performance. Two optimization concepts were compared: the inverted cone (that derives from the conic optimization of classical occulting disks) and the serrated edge, of which several samples were manufactured, with different geometrical parameters, surface roughnesses and coatings. This work summarizes the activity we have been carrying on to define the flight specifications for the METIS occulter.


Journal of Optics | 2014

Reflective and transmissive broadband coating polarizers in a spectral range centered at 121.6 nm

Juan I. Larruquert; A. Marco Malvezzi; Angelo Giglia; José A. Aznárez; Luis Rodríguez-de Marcos; José A. Méndez; Paolo Miotti; Fabio Frassetto; Giuseppe Massone; Stefano Nannarone; Giuseppe Crescenzio; Gerardo Capobianco; Silvano Fineschi

Polarimetry is a powerful tool for the interpretation of the role of the coronal plasma in the energy transfer processes from the inner parts of the Sun to the outer space. One of the key lines for observations is H I Lyman α (121.6 nm) among few spectral lines in the far ultraviolet (FUV), and hence efficient linear polarizers at this line are demanded. New designs based on (Al/MgF2)n multilayer coatings have been developed to obtain the smallest possible reflectance in the parallel plane of polarization (Rpar) with a simultaneous high reflectance in the perpendicular plane of polarization (Rper). Samples stored in nitrogen for ~8–17 months resulted in efficient polarizers at 121.6 nm, with Rpar ~ 0.01–0.017 and Rper ~ 0.69–0.725. The designs with a number n = 3–4 bilayers of Al/MgF2 result in a wider spectral range of efficient linear polarizers, compared to what can be obtained with n = 2. Coatings following various designs with good polarizing performance in a 7–8 nm wide FUV range were prepared. For the first time, a transmissive coating polarizer has been developed for this range, which has the benefit that it involves no deviation of the beam; it is based on another design of (Al/MgF2)3 multilayer coating. The transmissive polarizer has a good transmittance ratio between the two polarization components and, even though its figure of merit is not as high as that of the reflective polarizers, it incorporates filtering properties to reject wavelengths both below and above 121.6 nm; this property might enable a polarimeter for solar physics with an improved global figure of merit if a filter to isolate the H I Lyman α line could be avoided.


Proceedings of SPIE | 2012

Electro-optical polarimeters for ground-based and space-based observations of the solar K-corona

Gerardo Capobianco; Silvano Fineschi; Giuseppe Massone; E. Balboni; A. M. Malvezzi; Giuseppe Crescenzio; Luca Zangrilli; P. Calcidese; Ester Antonucci; M. Patrini

Polarimeters based on electro-optically tunable liquid crystals (LC) represent a new technology in the field of observational astrophysics. LC-based polarimeters are good candidates for replacing mechanically rotating polarimeters in most ground-based and space-based applications. During the 2006 total solar eclipse, we measured the visible-light polarized brightness (pB) of the solar K-corona with a LC-based polarimeter and imager (E-KPol). In this presentation, we describe the results obtained with the E-KPol, and we evaluate its performances in view of using a similar device for the pB imaging of the K-corona from space-based coronagraphs. Specifically, a broad-band LC polarimeter is planned for the METIS (Multi Element Telescope for Imaging and Spectroscopy) coronagraph for the Solar Orbiter mission to be launched in 2017. The METIS science driver of deriving the coronal electron density from pB images requires an accuracy of better than 1% in the measurement of linear polarization. We present the implications of this requirement on the METIS design to minimize the instrumental polarization of the broad-band visible-light (590-650 nm) polarimeter and of the other optics in the METIS visible-light path. Finally, we report preliminary ellipsometric measurements of the optical components of the METIS visible-light path.


Proceedings of SPIE | 2015

The Shadow Positioning Sensors (SPS) for formation flying metrology on-board the ESA-PROBA3 mission

A. Bemporad; Cristian Baccani; Gerardo Capobianco; Silvano Fineschi; M. Focardi; Federico Landini; Davide Loreggia; Giuseppe Massone; G. Nicolini; V. Noce; M. Pancrazzi; Marco Romoli; Steve Buckley; Kevin O'Neill; Etienne Renotte; Jean-Sébastien Servaye; Cédric Thizy

PROBA3 is an ESA technology mission devoted to in-orbit demonstration of the formation flight (FF) technique, with two satellites kept at an average inter-distance by about 144 m. The ASPIIC instrument on-board PROBA3 will be the first ever space-based coronagraph working on one satellite and having the external occulter located on the second satellite, thus allowing observations of the inner solar corona with unprecedented reduction of stray light. During the observational periods, the FF configuration will be maintained with very high precision and two different techniques will be implemented: the use of Shadow Positioning Sensors (SPS) located on the Coronagraph Spacecraft (diodes measuring the penumbral light intensity on the entrance pupil plane) and the use of Occulter Position Sensor LEDs (OPSE) located on the back side of the Occulter Spacecraft. This paper will review the main instrumental requirements on the SPS needed to determine the 3-dimensional relative positioning of the two PROBA3 satellites with high precision.

Collaboration


Dive into the Giuseppe Massone's collaboration.

Researchain Logo
Decentralizing Knowledge