Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Schettino is active.

Publication


Featured researches published by Giuseppe Schettino.


Lancet Oncology | 2005

New insights on cell death from radiation exposure

Kevin Prise; Giuseppe Schettino; M. Folkard; Kathryn D. Held

Ionising radiation has been an important part of cancer treatment for almost a century, being used in external-beam radiotherapy, brachytherapy, and targeted radionuclide therapy. At the molecular and cellular level, cell killing has been attributed to deposition of energy from the radiation in the DNA within the nucleus, with production of DNA double-strand breaks playing a central part. However, this DNA-centric model has been questioned because cell-death pathways, in which direct relations between cell killing and DNA damage diverge, have been reported. These pathways include membrane-dependent signalling pathways and bystander responses (when cells respond not to direct radiation exposure but to the irradiation of their neighbouring cells). New insights into mechanisms of these responses coupled with technological advances in targeting of cells in experimental systems with microbeams have led to a reassessment of the model of how cells are killed by ionising radiation. This review provides an update on these mechanisms.


Scientific Reports | 2011

Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles

Stephen J. McMahon; Wendy B. Hyland; Mark F. Muir; Jonathan A. Coulter; Suneil Jain; Karl T. Butterworth; Giuseppe Schettino; Glenn R. Dickson; A.R. Hounsell; Joe M. O'Sullivan; Kevin Prise; David Hirst; Frederick Currell

Gold nanoparticles (GNPs) are being proposed as contrast agents to enhance X-ray imaging and radiotherapy, seeking to take advantage of the increased X-ray absorption of gold compared to soft tissue. However, there is a great discrepancy between physically predicted increases in X-ray energy deposition and experimentally observed increases in cell killing. In this work, we present the first calculations which take into account the structure of energy deposition in the nanoscale vicinity of GNPs and relate this to biological outcomes, and show for the first time good agreement with experimentally observed cell killing by the combination of X-rays and GNPs. These results are not only relevant to radiotherapy, but also have implications for applications of heavy atom nanoparticles in biological settings or where human exposure is possible because the localised energy deposition high-lighted by these results may cause complex DNA damage, leading to mutation and carcinogenesis.


International Journal of Radiation Biology | 1997

A charged-particle microbeam: I. Development of an experimental system for targeting cells individually with counted particles

M. Folkard; B. Vojnovic; Kevin Prise; A.G. Bowey; R.J. Locke; Giuseppe Schettino; B.D. Michael

Charged-particle microbeams provide a unique opportunity to control precisely, the dose to individual cells and the localization of dose within the cell. The Gray Laboratory is now routinely operating a charged-particle microbeam capable of delivering targeted and counted particles to individual cells, at a dose-rate sufficient to permit a number of single-cell assays of radiation damage to be implemented. By this means, it is possible to study a number of important radiobiological processes in ways that cannot be achieved using conventional methods. This report describes the rationale, development and current capabilities of the Gray Laboratory microbeam.


Nanotechnology | 2010

Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy

Karl T. Butterworth; Jonathan A. Coulter; Suneil Jain; J Forker; Stephen J. McMahon; Giuseppe Schettino; Kevin Prise; Frederick Currell; David Hirst

High atomic number (Z) materials such as gold preferentially absorb kilovoltage x-rays compared to soft tissue and may be used to achieve local dose enhancement in tumours during treatment with ionizing radiation. Gold nanoparticles have been demonstrated as radiation dose enhancing agents in vivo and in vitro. In the present study, we used multiple endpoints to characterize the cellular cytotoxic response of a range of cell lines to 1.9 nm gold particles and measured dose modifying effects following transient exposure at low concentrations. Gold nanoparticles caused significant levels of cell type specific cytotoxicity, apoptosis and increased oxidative stress. When used as dose modifying agents, dose enhancement factors varied between the cell lines investigated with the highest enhancement being 1.9 in AGO-1522B cells at a nanoparticle concentration of 100 microg ml(-1). This study shows exposure to 1.9 nm gold particles to induce a range of cell line specific responses including decreased clonogenic survival, increased apoptosis and induction of DNA damage which may be mediated through the production of reactive oxygen species. This is the first study involving 1.9 nm nanometre sized particles to report multiple cellular responses which impact on the radiation dose modifying effect. The findings highlight the need for extensive characterization of responses to gold nanoparticles when assessing dose enhancing potential in cancer therapy.


Radiation Research | 2005

Low-Dose Binary Behavior of Bystander Cell Killing after Microbeam Irradiation of a Single Cell with Focused CK X Rays

Giuseppe Schettino; M. Folkard; Barry D. Michael; Kevin Prise

Abstract Schettino, G., Folkard, M., Michael, B. D. and Prise, K. M. Low-Dose Binary Behavior of Bystander Cell Killing after Microbeam Irradiation of a Single Cell with Focused CK X Rays. Radiat. Res. 163, 332–336 (2005). Although conclusive evidence has been obtained for the presence of radiation-induced bystander effects, the mechanisms that trigger and regulate these processes are still largely unknown. The bystander effect may play a critical role in determining the biological effectiveness of low-dose exposures, but questions on how to incorporate it into current models and extrapolate the risks of radiation-induced carcinogenesis are still open. The Gray Cancer Institute soft X-ray microbeam has been used to investigate the dose–response relationship of the bystander effect below 0.5 Gy. The survival response of V79 cells was assessed after the irradiation of a single cell within a population with a submicrometer-size beam of carbon K X rays (278 eV). Above 0.3 Gy, the measured bystander cell killing was in agreement with previously published data; however, a significant increase in the scatter of the data was observed in the low-dose region (<0.3 Gy). The data distribution observed indicates a binary behavior for triggering of the bystander response. According to our hypothesis, the probability of triggering a bystander response increases approximately linearly with the dose delivered to the single selected cell, reaching 100% above about 0.3 Gy. The magnitude of the bystander effect, when triggered, is approximately constant with the dose and results in an overall ∼10% reduction in survival in our system. This suggests that the event that triggers the emission of the bystander signal by the hit cell is an all-or-nothing process. Extrapolation of the data indicates that when a single fast electron traverses a V79 cell, there is a probability of ∼0.3% that the cell will emit the bystander signal. The data presented in this paper have also been analyzed statistically to test the possibility that complex DNA double-strand breaks may be the initial critical event.


Radiation Research | 2003

Low-Dose Studies of Bystander Cell Killing with Targeted Soft X Rays

Giuseppe Schettino; M. Folkard; Kevin Prise; Borivoj Vojnovic; Kathryn D. Held; B.D. Michael

Abstract Schettino, G., Folkard, M., Prise, K. M., Vojnovic, B., Held, K. D. and Michael, B. D. Low-Dose Studies of Bystander Cell Killing with Targeted Soft X Rays. Radiat. Res. 160, 505–511 (2003). The Gray Cancer Institute ultrasoft X-ray microprobe was used to quantify the bystander response of individual V79 cells exposed to a focused carbon K-shell (278 eV) X-ray beam. The ultrasoft X-ray microprobe is designed to precisely assess the biological response of individual cells irradiated in vitro with a very fine beam of low-energy photons. Characteristic CK X rays are generated by a focused beam of 10 keV electrons striking a graphite target. Circular diffraction gratings (i.e. zone plates) are then employed to focus the X-ray beam into a spot with a radius of 0.25 μm at the sample position. Using this microbeam technology, the correlation between the irradiated cells and their nonirradiated neighbors can be examined critically. The survival response of V79 cells irradiated with a CK X-ray beam was measured in the 0–2-Gy dose range. The response when all cells were irradiated was compared to that obtained when only a single cell was exposed. The cell survival data exhibit a linear-quadratic response when all cells were targeted (with evidence for hypersensitivity at low doses). When only a single cell was targeted within the population, 10% cell killing was measured. In contrast to the binary bystander behavior reported by many other investigations, the effect detected was initially dependent on dose (<200 mGy) and then reached a plateau (>200 mGy). In the low-dose region (<200 mGy), the response after irradiation of a single cell was not significantly different from that when all cells were exposed to radiation. Damaged cells were distributed uniformly over the area of the dish scanned (∼25 mm2). However, critical analysis of the distance of the damaged, unirradiated cells from other damaged cells revealed the presence of clusters of damaged cells produced under bystander conditions.


Radiotherapy and Oncology | 2011

Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy

Stephen J. McMahon; Wendy B. Hyland; Mark F. Muir; Jonathan A. Coulter; Suneil Jain; Karl T. Butterworth; Giuseppe Schettino; Glenn R. Dickson; A.R. Hounsell; Joe M. O’Sullivan; Kevin Prise; David Hirst; Frederick Currell

BACKGROUND AND PURPOSE The addition of gold nanoparticles (GNPs) to tumours leads to an increase in dose due to their high density and energy absorption coefficient, making it a potential radiosensitiser. However, experiments have observed radiosensitisations significantly larger than the increase in dose alone, including at megavoltage energies where golds relative energy absorption is lowest. This work investigates whether GNPs create dose inhomogeneities on a sub-cellular scale which combine with non-linear dose dependence of cell survival to be the source of radiosensitisation at megavoltage energies. MATERIALS AND METHODS Monte Carlo simulations were carried out to calculate dose in the vicinity of a single GNP on the nanoscale. The effect of this nanoscale dose distribution was then modelled for MDA-MB-231 cells exposed to 2 nm GNPs, and compared to experimental results. RESULTS Dramatic dose inhomogeneities occur around GNPs exposed to megavoltage radiation. When analysed using the Local Effect Model, these inhomogeneities lead to significant radiosensitisation, in agreement with experimental results. CONCLUSIONS This work suggests that GNP radiosensitisation is driven by inhomogeneities in dose on the nanoscale, rather than changes in dose over the entire cell, which may contribute to the similar radiosensitisation observed in megavoltage and kilovoltage experiments. The short range of these inhomogeneities and the variation in enhancement in different cells suggests sub-cellular localisation is important in determining GNP radiosensitisation.


Radiation Research | 2001

A Focused Ultrasoft X-Ray Microbeam for Targeting Cells Individually with Submicrometer Accuracy

M. Folkard; Giuseppe Schettino; Borivoj Vojnovic; Stuart Gilchrist; Alan Michette; S J Pfauntsch; Kevin Prise; B.D. Michael

Abstract Folkard, M., Schettino, G., Vojnovic, B., Gilchrist, S., Michette, A. G., Pfauntsch, S. J., Prise, K. M. and Michael, B. D. A Focused Ultrasoft X-Ray Microbeam for Targeting Cells Individually with Submicrometer Accuracy. Radiat. Res. 156, 796–804 (2001). The application of microbeams is providing new insights into the actions of radiation at the cell and tissue levels. So far, this has been achieved exclusively through the use of collimated charged particles. One alternative is to use ultrasoft X rays, focused by X-ray diffractive optics. We have developed a unique facility that uses 0.2–0.8-mm-diameter zone plates to focus ultrasoft X rays to a beam of less than 1 μm diameter. The zone plate images characteristic K-shell X rays of carbon or aluminum, generated by focusing a beam of 5–10 keV electrons onto the appropriate target. By reflecting the X rays off a grazing-incidence mirror, the contaminating bremsstrahlung radiation is reduced to 2%. The focused X rays are then aimed at selected subcellular targets using rapid automated cell-finding and alignment procedures; up to 3000 cells per hour can be irradiated individually using this arrangement.


International Journal of Nanomedicine | 2012

Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

Jonathan A. Coulter; Suneil Jain; Karl T. Butterworth; Laura E. Taggart; Glenn R. Dickson; Stephen J. McMahon; Wendy B. Hyland; Mark F. Muir; Coleman Trainor; A.R. Hounsell; Joe M. O'Sullivan; Giuseppe Schettino; Frederick Currell; David Hirst; Kevin Prise

Background This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data. Methods We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species. Results Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential. Conclusion Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies.


Radiation Research | 2001

Low-Dose Hypersensitivity in Chinese Hamster V79 Cells Targeted with Counted Protons Using a Charged-Particle Microbeam

Giuseppe Schettino; M. Folkard; Kevin Prise; Borivoj Vojnovic; A.G. Bowey; B.D. Michael

Abstract Schettino, G., Folkard, M., Prise, K. M., Vojnovic, B., Bowey, A. G. and Michael, B. D. Low-Dose Hypersensitivity in Chinese Hamster V79 Cells Targeted with Counted Protons Using a Charged-Particle Microbeam. Radiat. Res. 156, 526–534 (2001). The Gray Laboratory charged-particle microbeam has been used to assess the clonogenic ability of Chinese hamster V79 cells after irradiation of their nuclei with a precisely defined number of protons with energies of 1.0 and 3.2 MeV. The microbeam uses a 1-μm silica capillary collimator to deliver protons to subcellular targets with high accuracy. The detection system is based on a miniature photomultiplier tube positioned above the cell dish, which detects the photons generated by the passage of the charged particles through an 18-μm-thick scintillator placed below the cells. With this system, a detection efficiency of greater than 99% is achieved. The cells are plated on specially designed dishes (3-μm-thick Mylar base), and the nuclei are identified by fluorescence microscopy. After an incubation period of 3 days, the cells are revisited individually to assess the formation of colonies from the surviving cells. For each energy investigated, the survival curve obtained for the microbeam shows a significant deviation below 1 Gy from a response extrapolated using the LQ model for the survival data above 1 Gy. The data are well fitted by a model that supports the hypothesis that radioresistance is induced by low-dose hypersensitivity. These studies demonstrate the potential of the microbeam for performing studies of the effects of single charged particles on cells in vitro. The hypersensitive responses observed are comparable with those reported by others using different radiations and techniques.

Collaboration


Dive into the Giuseppe Schettino's collaboration.

Top Co-Authors

Avatar

Kevin Prise

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederick Currell

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

A.R. Hounsell

Belfast Health and Social Care Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joy N. Kavanagh

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge