Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Tropeano is active.

Publication


Featured researches published by Giuseppe Tropeano.


Bulletin of the Seismological Society of America | 2016

International Benchmark on Numerical Simulations for 1D, Nonlinear Site Response (PRENOLIN): Verification Phase Based on Canonical Cases

Julie Régnier; Luis‐Fabian Bonilla; Pierre-Yves Bard; Etienne Bertrand; Fabrice Hollender; Hiroshi Kawase; Deborah Sicilia; Pedro Arduino; A. Amorosi; Domniki Asimaki; Daniela Boldini; Long Chen; Anna Chiaradonna; Florent Demartin; Marco Ebrille; Ahmed Elgamal; Gaetano Falcone; Evelyne Foerster; Sebastiano Foti; Evangelia Garini; George Gazetas; Céline Gélis; Alborz Ghofrani; Amalia Giannakou; James R. Gingery; Nathalie Glinsky; Joseph Harmon; Youssef M. A. Hashash; Susumu Iai; Boris Jeremić

PREdiction of NOn‐LINear soil behavior (PRENOLIN) is an international benchmark aiming to test multiple numerical simulation codes that are capable of predicting nonlinear seismic site response with various constitutive models. One of the objectives of this project is the assessment of the uncertainties associated with nonlinear simulation of 1D site effects. A first verification phase (i.e., comparison between numerical codes on simple idealistic cases) will be followed by a validation phase, comparing the predictions of such numerical estimations with actual strong‐motion recordings obtained at well‐known sites. The benchmark presently involves 21 teams and 23 different computational codes. We present here the main results of the verification phase dealing with simple cases. Three different idealized soil profiles were tested over a wide range of shear strains with different input motions and different boundary conditions at the sediment/bedrock interface. A first iteration focusing on the elastic and viscoelastic cases was proved to be useful to ensure a common understanding and to identify numerical issues before pursuing the nonlinear modeling. Besides minor mistakes in the implementation of input parameters and output units, the initial discrepancies between the numerical results can be attributed to (1) different understanding of the expression “input motion” in different communities, and (2) different implementations of material damping and possible numerical energy dissipation. The second round of computations thus allowed a convergence of all teams to the Haskell–Thomson analytical solution in elastic and viscoelastic cases. For nonlinear computations, we investigate the epistemic uncertainties related only to wave propagation modeling using different nonlinear constitutive models. Such epistemic uncertainties are shown to increase with the strain level and to reach values around 0.2 (log_(10) scale) for a peak ground acceleration of 5  m/s^2 at the base of the soil column, which may be reduced by almost 50% when the various constitutive models used the same shear strength and damping implementation.


Bulletin of the Seismological Society of America | 2018

PRENOLIN: International Benchmark on 1D Nonlinear Site‐Response Analysis—Validation Phase Exercise

Julie Régnier; Luis Fabian Bonilla; Pierre Yves Bard; Etienne Bertrand; Fabrice Hollender; Hiroshi Kawase; Deborah Sicilia; Pedro Arduino; A. Amorosi; Dominiki Asimaki; Daniela Boldini; Long Chen; Anna Chiaradonna; Florent Demartin; Ahmed Elgamal; Gaetano Falcone; Evelyne Foerster; Sebastiano Foti; Evangelia Garini; George Gazetas; Céline Gélis; Alborz Ghofrani; Amalia Giannakou; James R. Gingery; Nathalie Glinsky; Joseph Harmon; Youssef M. A. Hashash; Susumu Iai; Steve Kramer; Stavroula Kontoe

This article presents the main results of the validation phase of the PRENOLIN project. PRENOLIN is an international benchmark on 1D nonlinear (NL) site‐response analysis. This project involved 19 teams with 23 different codes tested. It was divided into two phases; with the first phase verifying the numerical solution of these codes on idealized soil profiles using simple signals and real seismic records. The second phase described in this article referred to code validation for the analysis of real instrumented sites. This validation phase was performed on two sites (KSRH10 and Sendai) of the Japanese strong‐motion networks KiK‐net and Port and Airport Research Institute (PARI), respectively, with a pair of accelerometers at surface and depth. Extensive additional site characterizations were performed at both sites involving in situ and laboratory measurements of the soil properties. At each site, sets of input motions were selected to represent different peak ground acceleration (PGA) and frequency content. It was found that the code‐to‐code variability given by the standard deviation of the computed surface‐response spectra is around 0.1 (in log10 scale) regardless of the site and input motions. This indicates a quite large influence of the numerical methods on site‐effect assessment and more generally on seismic hazard. Besides, it was observed that site‐specific measurements are of primary importance for defining the input data in site‐response analysis. The NL parameters obtained from the laboratory measurements should be compared with curves coming from the literature. Finally, the lessons learned from this exercise are synthesized, resulting also in a few recommendations for future benchmarking studies, and the use of 1D NL, total stress site‐response analysis.


Bulletin of Earthquake Engineering | 2017

An uncoupled procedure for performance assessment of slopes in seismic conditions

Giuseppe Tropeano; Francesco Silvestri; Ernesto Ausilio

To assess the seismic performance of slopes, the simplified displacement-based methods represent a good-working balance between simplicity and reliability. The so-called uncoupled methods permit to account for the effects of deformability and ductility by computing separately the dynamic site response and the sliding block displacements. In this paper the procedure proposed by Bray and Rathje (1998) was revised and adapted to Italian seismicity on a set of subsoil models, representative of the different soil classes specified by the Italian and European Codes. The relationship expressing the decrease of the equivalent acceleration with earthquake/soil frequency ratio was then obtained by means of dynamic 1D seismic response analyses. Statistical correlations between calculated Newmark displacements, significant ground motion parameters and the critical acceleration ratio were also derived. To estimate the reference ground motion parameters necessary for the full implementation of the proposed procedure, literature predictive equations, calibrated on strong motion records of international databases, were revised for the Italian seismicity. These ground motion prediction equations, together with simplified displacements relationships, allowed for developing an original quick procedure to evaluate the seismic slope performance by specifying the probability of exceedance of a threshold displacement, based only on few seismic input motion parameters.


Bulletin of Earthquake Engineering | 2017

Erratum to: Implications of non-synchronous excitation induced by nonlinear site amplification and of soil-structure interaction on the seismic response of multi-span bridges founded on piles

Maria Chiara Capatti; Giuseppe Tropeano; Michele Morici; Sandro Carbonari; Francesca Dezi; Graziano Leoni; Francesco Silvestri

This work investigates the effects of soil-structure interaction and spatial variability of seismic motion due to nonlinear site amplification on the seismic behaviour of long multi-span bridges founded on piles. An analysis framework able to include the spatial variation of ground motion induced by specific geological and geomorphological scenarios in the seismic soil-structure interaction analysis of long bridges is adopted, exploiting advantages of the substructure approach. The methodology is applied to a case study constituted by a pile-supported multi-span bridge founded in a soft clay deposit overlaying a stiff bedrock with three different configurations: horizontal, inclined and wedge-shaped. The reference input motion at the outcropping bedrock is represented by a set of real accelerograms and different seismic response models are used to compute site amplification effects, discussing the contribution to the free-field ground motion of both the two-dimensional configuration of the deposit and the nonlinear soil behaviour. The ground motions obtained from the different models are then used for computing the foundation input motion accounting for the pile–soil kinematic interaction; thereafter, inertial interaction analyses are performed on structural models with either fixed or compliant base, considering the non-synchronous seismic actions at the piers foundation. The results, compared in terms of piers head displacements, ductility demand and deck transverse bending moments, finally show the relative importance of bedrock morphology, soil nonlinearity and soil-structure interaction on the structural response.


Bulletin of Earthquake Engineering | 2018

Development of a simplified model for pore water pressure build-up induced by cyclic loading

Anna Chiaradonna; Giuseppe Tropeano; Anna d’Onofrio; Francesco Silvestri

In this paper the formulation of a simplified model for predicting pore water pressure build-up under seismic loading is updated and applied to different soils. The model is directly based on the results of cyclic laboratory tests and it is based on the damage parameter concept, avoiding any arbitrary equivalence criterion necessary to compare the seismic demand to the cyclic strength of liquefiable soils. The model is suitable to be implemented into non-linear coupled seismic response analyses since it operates in the time domain. The analytical formulation is fully described and the calibration and the physical meaning of the model parameters are analysed in detail. Simple applications show the practical usefulness of the model with respect to other literature approaches.


XVI European Conference on Soil Mechanics and Geotechnical Engineering | 2015

Numerical analyses of cross and buttress walls effectiveness.

Fabio Maria Soccodato; Giuseppe Tropeano; E Erbì; F. Pintus

The nature-inspired concept of self-healing materials in construction is relatively new and has recently attracted significant attention as this could bring about substantial savings in maintenance costs as well as enhance the durability and serviceability and improve the safety of our structures and infrastructure. Much of the research and applications to date has focused on concrete, for structural applications, and on asphalt, with significant advances being made. However, to date no attention has been given to the incorporation of self-healing concepts in geotechnical and geo-environmental applications. This includes the use of concrete and other stabilising agents in foundations and other geotechnical structures, grouts, grouted soil systems, soil-cement systems and slurry walls for ground improvement and land remediation applications. The recently established Materials for Life (M4L) project funded by EPSRC has initiated research activities in the UK focussing on those applications. The project involves the development and integration of the use of microcapsules, biological agents, shape memory polymers and vascular networks as healing systems. The authors are exploring development of self-healing systems using mineral admixtures, microencapsulation and bio-cementation applications. The paper presents an overview of those initiatives to date and potential applications and presents some relevant preliminary results.By contrast to studies in petroleum geology and, despite their world-wide occurrence, geotechnical studies of ancient fluvial sediments are rare. This paper introduces the main characteristics of these sediments by reference to a classic UK example. Attention is then drawn to a number of major overseas examples where, although the principal features can be recognised, large differences arise as a result of factors such as the tectonic setting, the volume and mineralogy of the source material and the climate at the time the sediments were deposited. The first, over-riding problem for their engineering evaluation comes during the site investigation phase with the difficulty of deducing the geological structure and distribution of the widely varying lithologies.Strain accumulation in granular soils due to dynamic loading is investigated through long term cyclic triaxial tests and cyclic triaxial tests according to ASTM D 3999-91. Soil parameters, test equipment and loading conditions have a significant influence on strain accumulation, therefore a parameterization of the silica sand and a description of the cyclic triaxial test device are explained. Cyclic triaxial tests are performed and test results are presented illustrating the evolution of Young’s modulus during long term cyclic loading. The influence of the width of the stress-strain loop and the initial void ratio on strain accumulation is investigated and validated with existing accumulation models. The usefulness of Miner’s rule on sand subjected to cyclic loading is demonstrated by two tests with different packages of loading cycles.


Geotechnique | 2016

An innovative computer code for 1D seismic response analysis including shear strength of soils

Giuseppe Tropeano; Anna Chiaradonna; A. D'Onofrio; Francesco Silvestri


Seventh International Conference on Case Histories in Geotechnical Engineering. | 2013

Earthquake Geotechnical Engineering Aspects: the 2012 Emilia-Romagna Earthquake (Italy).

Vincenzo Fioravante; Daniela Giretti; Glenda Abate; Stefano Aversa; Daniela Boldini; Piera Paola Capilleri; Antonio Cavallaro; Deepak Chamlagain; Teresa Crespellani; Francesca Dezi; Johann Facciorusso; Alessandro Ghinelli; Salvatore Grasso; Giuseppe Lanzo; Claudia Madiai; Maria Rosella Maugeri; Michele; Alessandro Pagliaroli; Carlo Rainieri; Giuseppe Tropeano; Filippo Santucci de Magistris; Stefania Sica; Francesco Silvestri; Giovanni Vannucchi


the 6th International Conference on Earthquake Geotechnical Engineering (6ICEGE) | 2015

Application of a simplified model for the prediction of pore pressure build-up in sandy soils subjected to seismic loading

Anna Chiaradonna; Giuseppe Tropeano; Anna d’Onofrio; Francesco Silvestri; D. Park


Procedia Engineering | 2016

A Simplified Method for Pore Pressure Buildup Prediction: From Laboratory Cyclic Tests to the 1D Soil Response Analysis in Effective Stress Conditions

Anna Chiaradonna; Giuseppe Tropeano; Anna d’Onofrio; Francesco Silvestri

Collaboration


Dive into the Giuseppe Tropeano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Chiaradonna

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna d’Onofrio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesca Dezi

University of the Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Chiara Capatti

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Sandro Carbonari

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge