Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppina D'Alessandro is active.

Publication


Featured researches published by Giuseppina D'Alessandro.


American Journal of Physiology-cell Physiology | 2010

CXCL12-induced glioblastoma cell migration requires intermediate conductance Ca2+-activated K+ channel activity

Miriam Sciaccaluga; Bernard Fioretti; Luigi Catacuzzeno; Francesca Pagani; Cristina Bertollini; Maria Rosito; Myriam Catalano; Giuseppina D'Alessandro; Antonio Santoro; Giampaolo Cantore; Davide Ragozzino; Emilia Castigli; Fabio Franciolini; Cristina Limatola

The activation of ion channels is crucial during cell movement, including glioblastoma cell invasion in the brain parenchyma. In this context, we describe for the first time the contribution of intermediate conductance Ca(2+)-activated K (IK(Ca)) channel activity in the chemotactic response of human glioblastoma cell lines, primary cultures, and freshly dissociated tissues to CXC chemokine ligand 12 (CXCL12), a chemokine whose expression in glioblastoma has been correlated with its invasive capacity. We show that blockade of the IK(Ca) channel with its specific inhibitor 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) or IK(Ca) channel silencing by short hairpin RNA (shRNA) completely abolished CXCL12-induced cell migration. We further demonstrate that this is not a general mechanism in glioblastoma cell migration since epidermal growth factor (EGF), which also activates IK(Ca) channels in the glioblastoma-derived cell line GL15, stimulate cell chemotaxis even if the IK(Ca) channels have been blocked or silenced. Furthermore, we demonstrate that both CXCL12 and EGF induce Ca(2+) mobilization and IK(Ca) channel activation but only CXCL12 induces a long-term upregulation of the IK(Ca) channel activity. Furthermore, the Ca(2+)-chelating agent BAPTA-AM abolished the CXCL12-induced, but not the EGF-induced, glioblastoma cell chemotaxis. In addition, we demonstrate that the extracellular signal-regulated kinase (ERK)1/2 pathway is only partially implicated in the modulation of CXCL12-induced glioblastoma cell movement, whereas the phosphoinositol-3 kinase (PI3K) pathway is not involved. In contrast, EGF-induced glioblastoma migration requires both ERK1/2 and PI3K activity. All together these findings suggest that the efficacy of glioblastoma invasiveness might be related to an array of nonoverlapping mechanisms activated by different chemotactic agents.


Molecular Oncology | 2015

Autophagy induction impairs migration and invasion by reversing EMT in glioblastoma cells

Myriam Catalano; Giuseppina D'Alessandro; Francesca Lepore; Marco Corazzari; Cristina Valacca; Fiorella Faienza; Vincenzo Esposito; Cristina Limatola; Francesco Cecconi; Sabrina Di Bartolomeo

Cell migration and invasion are highly regulated processes involved in both physiological and pathological conditions. Here we show that autophagy modulation regulates the migration and invasion capabilities of glioblastoma (GBM) cells. We observed that during autophagy occurrence, obtained by nutrient deprivation or by pharmacological inhibition of the mTOR complexes, GBM migration and chemokine‐mediated invasion were both impaired. We also observed that SNAIL and SLUG, two master regulators of the epithelial–mesenchymal transition (EMT process), were down‐regulated upon autophagy stimulation and, as a consequence, we found a transcriptional and translational up‐regulation of N‐ and R‐cadherins. Conversely, in BECLIN 1‐silenced GBM cells, an increased migration capability and an up‐regulation of SNAIL and SLUG was observed, with a resulting decrease in N‐ and R‐cadherin mRNAs. ATG5 and ATG7 down‐regulation also resulted in an increased migration and invasion of GBM cells combined to an up‐regulation of the two EMT regulators. Finally, experiments performed in primary GBM cells from patients largely confirmed the results obtained in established cell cultures.


Cell Death and Disease | 2013

KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo

Giuseppina D'Alessandro; Myriam Catalano; Miriam Sciaccaluga; Giuseppina Chece; R. Cipriani; Maria Rosito; Alfonso Grimaldi; Clotilde Lauro; G. Cantore; Antonio Santoro; Bernard Fioretti; Fabio Franciolini; Heike Wulff; Cristina Limatola

Glioblastoma multiforme (GBM) is a diffuse brain tumor characterized by high infiltration in the brain parenchyma rendering the tumor difficult to eradicate by neurosurgery. Efforts to identify molecular targets involved in the invasive behavior of GBM suggested ion channel inhibition as a promising therapeutic approach. To determine if the Ca2+-dependent K+ channel KCa3.1 could represent a key element for GBM brain infiltration, human GL-15 cells were xenografted into the brain of SCID mice that were then treated with the specific KCa3.1 blocker TRAM-34 (1-((2-chlorophenyl) (diphenyl)methyl)-1H-pyrazole). After 5 weeks of treatment, immunofluorescence analyses of cerebral slices revealed reduced tumor infiltration and astrogliosis surrounding the tumor, compared with untreated mice. Significant reduction of tumor infiltration was also observed in the brain of mice transplanted with KCa3.1-silenced GL-15 cells, indicating a direct effect of TRAM-34 on GBM-expressed KCa3.1 channels. As KCa3.1 channels are also expressed on microglia, we investigated the effects of TRAM-34 on microglia activation in GL-15 transplanted mice and found a reduction of CD68 staining in treated mice. Similar results were observed in vitro where TRAM-34 reduced both phagocytosis and chemotactic activity of primary microglia exposed to GBM-conditioned medium. Taken together, these results indicate that KCa3.1 activity has an important role in GBM invasiveness in vivo and that its inhibition directly affects glioma cell migration and reduces astrocytosis and microglia activation in response to tumor-released factors. KCa3.1 channel inhibition therefore constitutes a potential novel therapeutic approach to reduce GBM spreading into the surrounding tissue.


Nature Communications | 2015

Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice

Stefano Garofalo; Giuseppina D'Alessandro; Giuseppina Chece; Frédéric Brau; Laura Maggi; Alessandro Rosa; Alessandra Porzia; Fabrizio Mainiero; Vincenzo Esposito; Clotilde Lauro; Giorgia Benigni; Giovanni Bernardini; Angela Santoni; Cristina Limatola

Mice exposed to standard (SE) or enriched environment (EE) were transplanted with murine or human glioma cells and differences in tumour development were evaluated. We report that EE exposure affects: (i) tumour size, increasing mice survival; (ii) glioma establishment, proliferation and invasion; (iii) microglia/macrophage (M/Mφ) activation; (iv) natural killer (NK) cell infiltration and activation; and (v) cerebral levels of IL-15 and BDNF. Direct infusion of IL-15 or BDNF in the brain of mice transplanted with glioma significantly reduces tumour growth. We demonstrate that brain infusion of IL-15 increases the frequency of NK cell infiltrating the tumour and that NK cell depletion reduces the efficacy of EE and IL-15 on tumour size and of EE on mice survival. BDNF infusion reduces M/Mφ infiltration and CD68 immunoreactivity in tumour mass and reduces glioma migration inhibiting the small G protein RhoA through the truncated TrkB.T1 receptor. These results suggest alternative approaches for glioma treatment.


Cell Death and Disease | 2016

KCa3.1 inhibition switches the phenotype of glioma-infiltrating microglia/macrophages

Alfonso Grimaldi; Giuseppina D'Alessandro; M. T. Golia; E. M. Grössinger; S. Di Angelantonio; Davide Ragozzino; Antonio Santoro; Vincenzo Esposito; H. Wulff; Myriam Catalano; Cristina Limatola

Among the strategies adopted by glioma to successfully invade the brain parenchyma is turning the infiltrating microglia/macrophages (M/MΦ) into allies, by shifting them toward an anti-inflammatory, pro-tumor phenotype. Both glioma and infiltrating M/MΦ cells express the Ca2+-activated K+ channel (KCa3.1), and the inhibition of KCa3.1 activity on glioma cells reduces tumor infiltration in the healthy brain parenchyma. We wondered whether KCa3.1 inhibition could prevent the acquisition of a pro-tumor phenotype by M/MΦ cells, thus contributing to reduce glioma development. With this aim, we studied microglia cultured in glioma-conditioned medium or treated with IL-4, as well as M/MΦ cells acutely isolated from glioma-bearing mice and from human glioma biopsies. Under these different conditions, M/MΦ were always polarized toward an anti-inflammatory state, and preventing KCa3.1 activation by 1-[(2-Chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), we observed a switch toward a pro-inflammatory, antitumor phenotype. We identified FAK and PI3K/AKT as the molecular mechanisms involved in this phenotype switch, activated in sequence after KCa3.1. Anti-inflammatory M/MΦ have higher expression levels of KCa3.1 mRNA (kcnn4) that are reduced by KCa3.1 inhibition. In line with these findings, TRAM-34 treatment, in vivo, significantly reduced the size of tumors in glioma-bearing mice. Our data indicate that KCa3.1 channels are involved in the inhibitory effects exerted by the glioma microenvironment on infiltrating M/MΦ, suggesting a possible role as therapeutic targets in glioma.


Journal of Molecular Biology | 2017

Transcription and DNA Damage: Holding Hands or Crossing Swords?

Giuseppina D'Alessandro; Fabrizio d'Adda di Fagagna

Transcription has classically been considered a potential threat to genome integrity. Collision between transcription and DNA replication machinery, and retention of DNA:RNA hybrids, may result in genome instability. On the other hand, it has been proposed that active genes repair faster and preferentially via homologous recombination. Moreover, while canonical transcription is inhibited in the proximity of DNA double-strand breaks, a growing body of evidence supports active non-canonical transcription at DNA damage sites. Small non-coding RNAs accumulate at DNA double-strand break sites in mammals and other organisms, and are involved in DNA damage signaling and repair. Furthermore, RNA binding proteins are recruited to DNA damage sites and participate in the DNA damage response. Here, we discuss the impact of transcription on genome stability, the role of RNA binding proteins at DNA damage sites, and the function of small non-coding RNAs generated upon damage in the signaling and repair of DNA lesions.


Oncotarget | 2016

KCa3.1 channel inhibition sensitizes malignant gliomas to temozolomide treatment

Giuseppina D'Alessandro; Alfonso Grimaldi; Giuseppina Chece; Alessandra Porzia; Vincenzo Esposito; Antonio Santoro; Maurizio Salvati; Fabrizio Mainiero; Davide Ragozzino; Silvia Di Angelantonio; Heike Wulff; Myriam Catalano; Cristina Limatola

Malignant gliomas are among the most frequent and aggressive cerebral tumors, characterized by high proliferative and invasive indexes. Standard therapy for patients, after surgery and radiotherapy, consists of temozolomide (TMZ), a methylating agent that blocks tumor cell proliferation. Currently, there are no therapies aimed at reducing tumor cell invasion. Ion channels are candidate molecular targets involved in glioma cell migration and infiltration into the brain parenchyma. In this paper we demonstrate that: i) blockade of the calcium-activated potassium channel KCa3.1 with TRAM-34 has co-adjuvant effects with TMZ, reducing GL261 glioma cell migration, invasion and colony forming activity, increasing apoptosis, and forcing cells to pass the G2/M cell cycle phase, likely through cdc2 de-phosphorylation; ii) KCa3.1 silencing potentiates the inhibitory effect of TMZ on glioma cell viability; iii) the combination of TMZ/TRAM-34 attenuates the toxic effects of glioma conditioned medium on neuronal cultures, through a microglia dependent mechanism since the effect is abolished by clodronate-induced microglia killing; iv) TMZ/TRAM-34 co-treatment increases the number of apoptotic tumor cells, and the mean survival time in a syngeneic mouse glioma model (C57BL6 mice implanted with GL261 cells); v) TMZ/TRAM-34 co-treatment reduces cell viability of GBM cells and cancer stem cells (CSC) freshly isolated from patients. Taken together, these data suggest a new therapeutic approach for malignant glioma, targeting both glioma cell proliferating and migration, and demonstrate that TMZ/TRAM-34 co-treatment affects both glioma cells and infiltrating microglia, resulting in an overall reduction of tumor cell progression.


Nature Communications | 2017

A damaged genome's transcriptional landscape through multilayered expression profiling around in situ-mapped DNA double-strand breaks

Fabio Iannelli; Alessandro Galbiati; Ilaria Capozzo; Quan Nguyen; Brian Magnuson; Flavia Michelini; Giuseppina D'Alessandro; Matteo Cabrini; Marco Roncador; Sofia Francia; Nicola Crosetto; Mats Ljungman; Piero Carninci; Fabrizio d'Adda di Fagagna

Of the many types of DNA damage, DNA double-strand breaks (DSBs) are probably the most deleterious. Mounting evidence points to an intricate relationship between DSBs and transcription. A cell system in which the impact on transcription can be investigated at precisely mapped genomic DSBs is essential to study this relationship. Here in a human cell line, we map genome-wide and at high resolution the DSBs induced by a restriction enzyme, and we characterize their impact on gene expression by four independent approaches by monitoring steady-state RNA levels, rates of RNA synthesis, transcription initiation and RNA polymerase II elongation. We consistently observe transcriptional repression in proximity to DSBs. Downregulation of transcription depends on ATM kinase activity and on the distance from the DSB. Our study couples for the first time, to the best of our knowledge, high-resolution mapping of DSBs with multilayered transcriptomics to dissect the events shaping gene expression after DSB induction at multiple endogenous sites.


PLOS ONE | 2016

Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

Irene Onorato; Giuseppina D'Alessandro; Maria Amalia Di Castro; Massimiliano Renzi; Gabriella Dobrowolny; Antonio Musarò; Marco Salvetti; Cristina Limatola; Andrea Crisanti; Francesca Grassi

Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents.


The Journal of Neuroscience | 2017

The Glycoside Oleandrin Reduces Glioma Growth with Direct and Indirect Effects on Tumor Cells

Stefano Garofalo; Alfonso Grimaldi; Giuseppina Chece; Alessandra Porzia; Stefania Morrone; Fabrizio Mainiero; Giuseppina D'Alessandro; Vincenzo Esposito; Barbara Cortese; Silvia Di Angelantonio; Flavia Trettel; Cristina Limatola

Oleandrin is a glycoside that inhibits the ubiquitous enzyme Na+/K+-ATPase. In addition to its known effects on cardiac muscle, recent in vitro and in vivo evidence highlighted its potential for anticancer properties. Here, we evaluated for the first time the effect of oleandrin on brain tumors. To this aim, mice were transplanted with human or murine glioma and analyzed for tumor progression upon oleandrin treatment. In both systems, oleandrin impaired glioma development, reduced tumor size, and inhibited cell proliferation. We demonstrated that oleandrin does the following: (1) enhances the brain-derived neurotrophic factor (BDNF) level in the brain; (2) reduces both microglia/macrophage infiltration and CD68 immunoreactivity in the tumor mass; (3) decreases astrogliosis in peritumoral area; and (4) reduces glioma cell infiltration in healthy parenchyma. In BDNF-deficient mice (bdnftm1Jae/J) and in glioma cells silenced for TrkB receptor expression, oleandrin was not effective, indicating a crucial role for BDNF in oleandrins protective and antitumor functions. In addition, we found that oleandrin increases survival of temozolomide-treated mice. These results encourage the development of oleandrin as possible coadjuvant agent in clinical trials of glioma treatment. SIGNIFICANCE STATEMENT In this work, we paved the road for a new therapeutic approach for the treatment of brain tumors, demonstrating the potential of using the cardioactive glycoside oleandrin as a coadjuvant drug to standard chemotherapeutics such as temozolomide. In murine models of glioma, we demonstrated that oleandrin significantly increased mouse survival and reduced tumor growth both directly on tumor cells and indirectly by promoting an antitumor brain microenvironment with a key protective role played by the neurotrophin brain-derived neurotrophic factor.

Collaboration


Dive into the Giuseppina D'Alessandro's collaboration.

Top Co-Authors

Avatar

Cristina Limatola

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Myriam Catalano

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Alfonso Grimaldi

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Antonio Santoro

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Esposito

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Alessandra Porzia

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Fabrizio Mainiero

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Giuseppina Chece

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Davide Ragozzino

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Stefano Garofalo

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge