Giuseppina Milano
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giuseppina Milano.
Experimental Biology and Medicine | 2002
Giuseppina Milano; A. Corno; Silvio Lippa; Ludwig K. von Segesser; Michele Samaja
Chronic hypoxia (CH) is believed to induce myocardial protection, but this is in contrast with clinical evidence. Here, we test the hypothesis that repeated brief reoxygenation episodes during prolonged CH improve myocardial tolerance to hypoxia-induced dysfunction. Male 5-week-old Sprague-Dawley rats (n = 7–9/group) were exposed for 2 weeks to CH (F1O2 = 0.10), intermittent hypoxia (IH, same as CH, but 1 hr/day exposure to room air), or normoxia (N, F1O2 = 0.21). Hearts were isolated, Langendorff perfused for 30 min with hypoxic medium (Krebs-Henseleit, PO2 = 67 mmHg), and exposed to hyperoxia (PO2 = 670 mmHg). CH hearts displayed higher end-diastolic pressure, lower rate-pressure product, and higher vascular resistance than IH. During hypoxic perfusion, anaerobic mechanisms recruitment was similar in CH and IH hearts, but less than in N. Thus, despite differing only for 1 hr daily exposure to room air, CH and IH induced different responses in animal homeostasis, markers of oxidative stress, and myocardial tolerance to reoxygenation. We conclude that the protection in animals exposed to CH appears conferred by the hypoxic preconditioning due to the reoxygenation rather than by hypoxia per se.
Journal of Transplantation | 2012
Giuseppe Vassalli; Giuseppina Milano; Tiziano Moccetti
In solid organ transplantation, ischemia/reperfusion (IR) injury during organ procurement, storage and reperfusion is an unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated protein kinase (MAPK) signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK), extracellular signal- regulated kinase-1/2 (ERK1/2), p38 MAPK, and big MAPK-1 (BMK1/ERK5). Here, we review the role of MAPK activation during myocardial IR injury as it occurs during heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases, but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new storage solutions, and gentle reperfusion.
PLOS ONE | 2013
Valeria Parente; Serena Balasso; Giulio Pompilio; Lorena Verduci; Gualtiero I. Colombo; Giuseppina Milano; Lidia Squadroni; Franco Cotelli; Ombretta Pozzoli; Maurizio C. Capogrossi
Aims the adult zebrafish heart regenerates spontaneously after injury and has been used to study the mechanisms of cardiac repair. However, no zebrafish model is available that mimics ischemic injury in mammalian heart. We developed and characterized zebrafish cardiac injury induced by hypoxia/reoxygenation (H/R) and the regeneration that followed it. Methods and Results adult zebrafish were kept either in hypoxic (H) or normoxic control (C) water for 15 min; thereafter fishes were returned to C water. Within 2–6 hours (h) after reoxygenation there was evidence of cardiac oxidative stress by dihydroethidium fluorescence and protein nitrosylation, as well as of inflammation. We used Tg(cmlc2:nucDsRed) transgenic zebrafish to identify myocardial cell nuclei. Cardiomyocyte apoptosis and necrosis were evidenced by TUNEL and Acridine Orange (AO) staining, respectively; 18 h after H/R, 9.9±2.6% of myocardial cell nuclei were TUNEL+ and 15.0±2.5% were AO+. At the 30-day (d) time point myocardial cell death was back to baseline (n = 3 at each time point). We evaluated cardiomyocyte proliferation by Phospho Histone H3 (pHH3) or Proliferating Cell Nuclear Antigen (PCNA) expression. Cardiomyocyte proliferation was apparent 18–24 h after H/R, it achieved its peak 3–7d later, and was back to baseline at 30d. 7d after H/R 17.4±2.3% of all cardiomyocytes were pHH3+ and 7.4±0.6% were PCNA+ (n = 3 at each time point). Cardiac function was assessed by 2D-echocardiography and Ventricular Diastolic and Systolic Areas were used to compute Fractional Area Change (FAC). FAC decreased from 29.3±2.0% in normoxia to 16.4±1.8% at 18 h after H/R; one month later ventricular function was back to baseline (n = 12 at each time point). Conclusions zebrafish exposed to H/R exhibit evidence of cardiac oxidative stress and inflammation, myocardial cell death and proliferation. The initial decrease in ventricular function is followed by full recovery. This model more closely mimics reperfusion injury in mammals than other cardiac injury models.
Journal of The American Society of Echocardiography | 2014
Giuseppina Milano; Angela Raucci; Ranaldi Daniele; Luigi Sironi; Daniela Cardinale; Maurizio C. Capogrossi; Giulio Pompilio
BACKGROUND An increased risk for cardiac dysfunction is reported when the anti-epidermal growth factor receptor type 2 (ErbB2) antibody trastuzumab (Trz) is combined with doxorubicin (Dox) as adjuvant chemotherapy for patients with ErbB2-positive breast cancer. The aim of this study was to develop and characterize a novel mouse model of cardiotoxicity that recapitulates the clinical therapeutic protocols of consecutive cycles of Dox followed by Trz therapy. METHODS Chronic cardiotoxicity was induced in mice by administering six intraperitoneal injections of Dox weekly over a 2-week period (n = 38; cumulative dose, 24 mg/kg), Trz alone (n = 15; cumulative dose, 10 mg/kg), Trz administered 1 week after Dox treatment (n = 35), or an equivalent volume of saline (n = 24). RESULTS Echocardiography and pressure-volume analysis indicated that Dox administration was responsible for both left ventricular (LV) and right ventricular (RV) systolic dysfunction and dilatation, further exacerbated by subsequent Trz treatment. Trz alone induced a short down-regulation of LV ErbB2/4 expression associated with reversible LV dysfunction but did not affect receptor expression and RV performance. Dox and Trz in combination decreased the ratio of LV weight to tibia length as well as LV and RV wall thickness compared with Dox treatment. Plasma cardiac troponin I levels and myocardial oxidative stress were higher in mice treated with Dox and Trz than in those treated with Dox alone, while a similar increase of interstitial collagen I deposition was observed in both groups. Trz alone did not affect LV and RV remodeling. CONCLUSIONS These findings suggest that a combined Dox and Trz regimen provokes a detrimental synergistic global cardiac injury extending to both the LV and RV chambers.
Experimental Biology and Medicine | 2007
Anna Caretti; Sandrine Morel; Giuseppina Milano; Monica Fantacci; Paola Bianciardi; Raffaella Ronchi; Giuseppe Vassalli; Ludwig K. von Segesser; Michele Samaja
To study the in vivo dynamics of hypoxia-inducible factor 1α (HIF-1α), master regulator of O2-dependent gene expression, and mitogen-activated protein kinases (MAPKs) in the hypoxic myocardium, Sprague-Dawley rats (n = 4 to 6 per group) were exposed to 1-hr hypoxia (10% O2), 23-hr hypoxia, and 23-hr hypoxia, followed by reoxygenation. HIF-1α increased 15-fold after 1-hr hypoxia, remained constant for 23 hrs, and returned to baseline on reoxygenation. Extracellular signal–regulated kinases (ERK1/2) were unchanged throughout. Phosphorylated p38 increased 4-fold after 1-hr hypoxia and returned to baseline within 23-hr hypoxia. The activity of stress-activated protein kinases/c-Jun NH2-terminal kinases (JNKs), measured as phosphorylated c-Jun, increased 3-fold after 1-hr hypoxia and remained sustained afterward. Furthermore, HIF-1α was halved in rats that were administered with the p38 inhibitor SB202190 and made hypoxic for 1 hr. In conclusion, although very sensitive to the reoxygenation, HIF-1α is overexpressed in vivo in the hypoxic myocardium, and its acute induction by hypoxia is correlated with that of p38.
Experimental Biology and Medicine | 2004
Giuseppina Milano; Paola Bianciardi; A. Corno; Eric Raddatz; Sandrine Morel; Ludwig K. von Segesser; Michele Samaja
In vivo exposure to chronic hypoxia is considered to be a cause of myocardial dysfunction, thereby representing a deleterious condition, but repeated aeration episodes may exert some cardioprotection. We investigated the possible role of ATP-sensitive potassium channels in these mechanisms. First, rats (n = 8/group) were exposed for 14 days to either chronic hypoxia (CH; 10% O2) or chronic hypoxia with one episode/day of 1-hr normoxic aeration (CH+A), with normoxia (N) as the control. Second, isolated hearts were Langendorff perfused under hypoxia (10% O2, 30 min) and reoxygenated (94% O2, 30 min) with or without 3 μM glibenclamide (nonselective K+ATP channel-blocker) or 100 μM diazoxide (selective mitochondrial K+ATP channel-opener). Blood gasses, hemoglobin concentration, and plasma malondialdehyde were similar in CH and CH+A and in both different from normoxic (P < 0.01), body weight gain and plasma nitrate/nitrite were higher in CH+A than CH (P < 0.01), whereas apoptosis (number of TUNEL-positive nuclei) was less in CH+A than CH (P < 0.05). During in vitro hypoxia, the efficiency (ratio of ATP production/pressure x rate product) was the same in all groups and diazoxide had no measurable effects on myocardial performance, whereas glibenclamide increased end-diastolic pressure more in N and CH than in CH+A hearts (P < 0.05). During reoxgenation, efficiency was markedly less in CH with respect to N and CH+A (P < 0.0001), and rate x pressure product remained lower in CH than N and CH+A hearts (P < 0.001), but glibenclamide or diazoxide abolished this difference. Glibenclamide, but not diazoxide, decreased vascular resistance in N and CH (P < 0.005 and < 0.001) without changes in CH+A. We hypothesize that cardioprotection in chronically hypoxic hearts derive from cell depolarization by sarcolemmal K+ATP blockade or from preservation of oxidative phosphorylation efficiency (ATP turnover/myocardial performance) by mitochondrial K+ATP opening. Therefore K+ATP channels are involved in the deleterious effects of chronic hypoxia and in the cardioprotection elicited when chronic hypoxia is interrupted with short normoxic aeration episodes.
European Journal of Cardio-Thoracic Surgery | 2010
Giuseppina Milano; Michele Samaja; Sandrine Morel; Giuseppe Vassalli; Ludwig K. von Segesser
OBJECTIVE In contrast to the clinical evidence, experimental studies showed that chronic hypoxia (CH) confers a certain degree of protection against ischaemia-reperfusion damage. We studied the effects of daily reoxygenation during CH (CHReox) on hearts exposed to ischaemia-reperfusion. We also separated the intrinsic effects on the myocardium of CH and CHReox from those related to circulatory and nervous factors. METHODS Fifty-one Sprague-Dawley rats were maintained for 15 days under CH (10% O(2)) or CHReox (10% O(2)+1 h day(-1) exposure to air). Normoxic (N, 21% O(2)) rats were the control. The animals were randomly assigned to one of the three following protocols: (1) protocol A: hearts (n=7 per group) were subjected to 30-min occlusion of the left anterior descending (LAD) coronary artery followed by 3-h reperfusion, with measurement of the injury by tetrazolium staining; (2) protocol B: the end-diastolic pressure (EDP) and left ventricular developed pressure x heart rate (LVDP x HR) were measured in Langendorff-perfused isolated hearts (n=5 per group) during 30-min global ischaemia and 45-min reperfusion; and (3) protocol C: hearts (n=5 per group) were frozen for the determination of levels of endothelial nitric oxide synthase (eNOS) by Western blotting. RESULTS CHReox hearts displayed greater phosphorylation of the eNOS and enhanced plasma level of nitrates and nitrites in comparison to CH hearts (P<0.0001, Bonferronis post-test). The infarct size was greater in CH than in N hearts (P<0.0001, Bonferronis post-test) while it was reduced in CHReox in comparison to CH and N hearts (P<0.0001). At the end of reperfusion, EDP was higher in CH than CHReox and N hearts (P=0.01, Bonferronis post-test) while LVDP x HR was higher in CHReox and N than in CH hearts (P=0.03, Bonferronis post-test). CONCLUSIONS Exposure to CH results in impairment of myocardial tolerance to ischaemia-reperfusion, greater injury and reduced recovery of performance, in agreement with clinical evidence. Infarct size, diastolic contracture and myocardial performance have been reduced, respectively, by 63%, 64% and 151% with daily reoxygenation compared with chronic hypoxia by accelerating intrinsic adaptive changes.
PLOS ONE | 2013
Giuseppina Milano; Provvidenza Maria Abruzzo; Alessandra Bolotta; Marina Marini; Laura Terraneo; Barbara Ravara; Luisa Gorza; Maurizio Vitadello; Sabrina Burattini; Davide Curzi; Elisabetta Falcieri; Ludwig K. von Segesser; Michele Samaja
Background Exposure to intermittent hypoxia (IH) may enhance cardiac function and protects heart against ischemia-reperfusion (I/R) injury. To elucidate the underlying mechanisms, we developed a cardioprotective IH model that was characterized at hemodynamic, biochemical and molecular levels. Methods Mice were exposed to 4 daily IH cycles (each composed of 2-min at 6-8% O2 followed by 3-min reoxygenation for 5 times) for 14 days, with normoxic mice as controls. Mice were then anesthetized and subdivided in various subgroups for analysis of contractility (pressure-volume loop), morphology, biochemistry or resistance to I/R (30-min occlusion of the left anterior descending coronary artery (LAD) followed by reperfusion and measurement of the area at risk and infarct size). In some mice, the phosphatidylinositide 3-kinase (PI3K) inhibitor wortmannin was administered (24 µg/kg ip) 15 min before LAD. Results We found that IH did not induce myocardial hypertrophy; rather both contractility and cardiac function improved with greater number of capillaries per unit volume and greater expression of VEGF-R2, but not of VEGF. Besides increasing the phosphorylation of protein kinase B (Akt) and the endothelial isoform of NO synthase with respect to control, IH reduced the infarct size and post-LAD proteins carbonylation, index of oxidative damage. Administration of wortmannin reduced the level of Akt phosphorylation and worsened the infarct size. Conclusion We conclude that the PI3K/Akt pathway is crucial for IH-induced cardioprotection and may represent a viable target to reduce myocardial I/R injury.
PLOS ONE | 2011
Giuseppina Milano; Paola Bianciardi; Viviane Rochemont; Giuseppe Vassalli; Ludwig K. von Segesser; Marco Guazzi; Michele Samaja
Although chronic hypoxia is a claimed myocardial risk factor reducing tolerance to ischemia/reperfusion (I/R), intermittent reoxygenation has beneficial effects and enhances heart tolerance to I/R. Aim of the study: To test the hypothesis that, by mimicking intermittent reoxygenation, selective inhibition of phosphodiesterase-5 activity improves ischemia tolerance during hypoxia. Adult male Sprague-Dawley rats were exposed to hypoxia for 15 days (10% O2) and treated with placebo, sildenafil (1.4 mg/kg/day, i. p.), intermittent reoxygenation (1 h/day exposure to room air) or both. Controls were normoxic hearts. To assess tolerance to I/R all hearts were subjected to 30-min regional ischemia by left anterior descending coronary artery ligation followed by 3 h-reperfusion. Whereas hypoxia depressed tolerance to I/R, both sildenafil and intermittent reoxygenation reduced the infarct size without exhibiting cumulative effects. The changes in myocardial cGMP, apoptosis (DNA fragmentation), caspase-3 activity (alternative marker for cardiomyocyte apoptosis), eNOS phosphorylation and Akt activity paralleled the changes in cardioprotection. However, the level of plasma nitrates and nitrites was higher in the sildenafil+intermittent reoxygenation than sildenafil and intermittent reoxygenation groups, whereas total eNOS and Akt proteins were unchanged throughout. Conclusions: Sildenafil administration has the potential to mimic the cardioprotective effects led by intermittent reoxygenation, thereby opening the possibility to treat patients unable to be reoxygenated through a pharmacological modulation of NO-dependent mechanisms.
Experimental Biology and Medicine | 2010
Giuseppina Milano; Ludwig K. von Segesser; Sandrine Morel; Ana Joncic; Paola Bianciardi; Giuseppe Vassalli; Michele Samaja
In vivo exposure to chronic hypoxia (CH) depresses myocardial performance and tolerance to ischemia, but daily reoxyenation during CH (CHR) confers cardioprotection. To elucidate the underlying mechanism, we tested the role of phosphatidylinositol-3-kinase-protein kinase B (Akt) and p42/p44 extracellular signal-regulated kinases (ERK1/2), which are known to be associated with protection against ischemia/reperfusion (I/R). Male Sprague–Dawley rats were maintained for two weeks under CH (10% O2) or CHR (as CH but with one-hour daily exposure to room air). Then, hearts were either frozen for biochemical analyses or Langendorff-perfused to determine performance (intraventricular balloon) and tolerance to 30-min global ischemia and 45-min reperfusion, assessed as recovery of performance after I/R and infarct size (tetrazolium staining). Additional hearts were perfused in the presence of 15 μmol/L LY-294002 (inhibitor of Akt), 10 μmol/L UO-126 (inhibitor of ERK1/2) or 10 μmol/L PD-98059 (less-specific inhibitor of ERK1/2) given 15 min before ischemia and throughout the first 20 min of reperfusion. Whereas total Akt and ERK1/2 were unaffected by CH and CHR in vivo, in CHR hearts the phosphorylation of both proteins was higher than in CH hearts. This was accompanied by better performance after I/R (heart rate × developed pressure), lower end-diastolic pressure and reduced infarct size. Whereas the treatment with LY-294002 decreased the phosphorylation of Akt only, the treatment with UO-126 decreased ERK1/2, and that with PD-98059 decreased both Akt and ERK1/2. In all cases, the cardioprotective effect led by CHR was lost. In conclusion, in vivo daily reoxygenation during CH enhances Akt and ERK1/2 signaling. This response was accompanied by a complex phenotype consisting in improved resistance to stress, better myocardial performance and lower infarct size after I/R. Selective inhibition of Akt and ERK1/2 phosphorylation abolishes the beneficial effects of the reoxygenation. Therefore, Akt and ERK1/2 have an important role to mediate cardioprotection by reoxygenation during CH in vivo.