Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glen DeLoid is active.

Publication


Featured researches published by Glen DeLoid.


Nature Communications | 2014

Estimating the effective density of engineered nanomaterials for in vitro dosimetry

Glen DeLoid; Joel M. Cohen; Tom Darrah; Raymond Derk; Liying Rojanasakul; Georgios Pyrgiotakis; Wendel Wohlleben; Philip Demokritou

The need for accurate in vitro dosimetry remains a major obstacle to the development of cost-effective toxicological screening methods for engineered nanomaterials. An important key to accurate in vitro dosimetry is the characterization of sedimentation and diffusion rates of nanoparticles suspended in culture media, which largely depend upon the effective density and diameter of formed agglomerates in suspension. Here we present a rapid and inexpensive method for accurately measuring the effective density of nano-agglomerates in suspension. This novel method is based on the volume of the pellet obtained by bench-top centrifugation of nanomaterial suspensions in a packed cell volume tube, and is validated against gold-standard analytical ultracentrifugation data. This simple and cost-effective method allows nanotoxicologists to correctly model nanoparticle transport, and thus attain accurate dosimetry in cell culture systems, which will greatly advance the development of reliable and efficient methods for toxicological testing and investigation of nano-bio interactions in vitro.


Nanotoxicology | 2013

Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry.

Joel E. Cohen; Glen DeLoid; Georgios Pyrgiotakis; Philip Demokritou

Abstract In vitro toxicity assays are efficient and inexpensive tools for screening the increasing number of engineered nanomaterials (ENMs) entering the consumer market. However, the data produced by in vitro studies often vary substantially among different studies and from in vivo data. In part, these discrepancies may be attributable to lack of standardisation in dispersion protocols and inadequate characterisation of particle–media interactions which may affect the particle kinetics and the dose delivered to cells. In this study, a novel approach for preparation of monodisperse, stabilised liquid suspensions is presented and coupled with a numerical model which estimates delivered dose values. Empirically derived material- and media-specific functions are presented for each media–ENM system that can be used to convert administered doses to delivered doses. The interactions of ENMs with a variety of physiologic media were investigated and the importance of this approach was demonstrated by in vitro cytotoxicity assays using THP-1 macrophages.


Particle and Fibre Toxicology | 2015

Advanced computational modeling for in vitro nanomaterial dosimetry.

Glen DeLoid; Joel M. Cohen; Georgios Pyrgiotakis; Sandra V. Pirela; Anoop K. Pal; Jiying Liu; Jelena Srebric; Philip Demokritou

BackgroundAccurate and meaningful dose metrics are a basic requirement for in vitro screening to assess potential health risks of engineered nanomaterials (ENMs). Correctly and consistently quantifying what cells “see,” during an in vitro exposure requires standardized preparation of stable ENM suspensions, accurate characterizatoin of agglomerate sizes and effective densities, and predictive modeling of mass transport. Earlier transport models provided a marked improvement over administered concentration or total mass, but included assumptions that could produce sizable inaccuracies, most notably that all particles at the bottom of the well are adsorbed or taken up by cells, which would drive transport downward, resulting in overestimation of deposition.MethodsHere we present development, validation and results of two robust computational transport models. Both three-dimensional computational fluid dynamics (CFD) and a newly-developed one-dimensional Distorted Grid (DG) model were used to estimate delivered dose metrics for industry-relevant metal oxide ENMs suspended in culture media. Both models allow simultaneous modeling of full size distributions for polydisperse ENM suspensions, and provide deposition metrics as well as concentration metrics over the extent of the well. The DG model also emulates the biokinetics at the particle-cell interface using a Langmuir isotherm, governed by a user-defined dissociation constant, KD, and allows modeling of ENM dissolution over time.ResultsDose metrics predicted by the two models were in remarkably close agreement. The DG model was also validated by quantitative analysis of flash-frozen, cryosectioned columns of ENM suspensions. Results of simulations based on agglomerate size distributions differed substantially from those obtained using mean sizes. The effect of cellular adsorption on delivered dose was negligible for KD values consistent with non-specific binding (> 1 nM), whereas smaller values (≤ 1 nM) typical of specific high-affinity binding resulted in faster and eventual complete deposition of material.ConclusionsThe advanced models presented provide practical and robust tools for obtaining accurate dose metrics and concentration profiles across the well, for high-throughput screening of ENMs. The DG model allows rapid modeling that accommodates polydispersity, dissolution, and adsorption. Result of adsorption studies suggest that a reflective lower boundary condition is appropriate for modeling most in vitro ENM exposures.


Nature Protocols | 2017

Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials

Glen DeLoid; Joel M. Cohen; Georgios Pyrgiotakis; Philip Demokritou

Evidence continues to grow of the importance of in vitro and in vivo dosimetry in the hazard assessment and ranking of engineered nanomaterials (ENMs). Accurate dose metrics are particularly important for in vitro cellular screening to assess the potential health risks or bioactivity of ENMs. To ensure meaningful and reproducible quantification of in vitro dose, with consistent measurement and reporting between laboratories, it is necessary to adopt standardized and integrated methodologies for (i) generation of stable ENM suspensions in cell culture media; (ii) colloidal characterization of suspended ENMs, particularly of properties that determine particle kinetics in an in vitro system (size distribution and formed agglomerate effective density); and (iii) robust numerical fate and transport modeling for accurate determination of the ENM dose delivered to cells over the course of the in vitro exposure. Here we present an integrated comprehensive protocol based on such a methodology for in vitro dosimetry, including detailed standardized procedures for each of these three critical aims. The entire protocol requires ∼6–12 h to complete.


Respiratory Research | 2008

Signaling pathways required for macrophage scavenger receptor-mediated phagocytosis: analysis by scanning cytometry

Timothy H. Sulahian; Amy Imrich; Glen DeLoid; Aaron Winkler; Lester Kobzik

BackgroundScavenger receptors are important components of the innate immune system in the lung, allowing alveolar macrophages to bind and phagocytose numerous unopsonized targets. Mice with genetic deletions of scavenger receptors, such as SR-A and MARCO, are susceptible to infection or inflammation from inhaled pathogens or dusts. However, the signaling pathways required for scavenger receptor-mediated phagocytosis of unopsonized particles have not been characterized.MethodsWe developed a scanning cytometry-based high-throughput assay of macrophage phagocytosis that quantitates bound and internalized unopsonized latex beads. This assay allowed the testing of a panel of signaling inhibitors which have previously been shown to target opsonin-dependent phagocytosis for their effect on unopsonized bead uptake by human in vitro-derived alveolar macrophage-like cells. The non-selective scavenger receptor inhibitor poly(I) and the actin destabilizer cytochalasin D were used to validate the assay and caused near complete abrogation of bead binding and internalization, respectively.ResultsMicrotubule destabilization using nocodazole dramatically inhibited bead internalization. Internalization was also significantly reduced by inhibitors of tyrosine kinases (genistein and herbimycin A), protein kinase C (staurosporine, chelerythrine chloride and Gö 6976), phosphoinositide-3 kinase (LY294002 and wortmannin), and the JNK and ERK pathways. In contrast, inhibition of phospholipase C by U-73122 had no effect.ConclusionThese data indicate the utility of scanning cytometry for the analysis of phagocytosis and that phagocytosis of unopsonized particles has both shared and distinct features when compared to opsonin-mediated phagocytosis.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

A critical review of in vitro dosimetry for engineered nanomaterials

Joel M. Cohen; Glen DeLoid; Philip Demokritou

A major obstacle in the development of accurate cellular models for investigating nanobio interactions in vitro is determination of physiologically relevant measures of dose. Comparison of biological responses to nanoparticle exposure typically relies on administered dose metrics such as mass concentration of suspended particles, rather than the effective dose of particles that actually comes in contact with the cells over the time of exposure. Adoption of recently developed dosimetric methodologies will facilitate determination of effective dose delivered to cells in vitro, thereby improving the accuracy and reliability of in vitro screening data, validation of in vitro with in vivo data, and comparison across multiple datasets for the large variety of nanomaterials currently in the market.


Inhalation Toxicology | 2010

Development and characterization of a Versatile Engineered Nanomaterial Generation System (VENGES) suitable for toxicological studies

Phil K. Demokritou; Robert Büchel; Ramon M. Molina; Glen DeLoid; Joseph D. Brain; Sotiris E. Pratsinis

A novel system for generation of engineered nanomaterials (ENMs) suitable for in situ toxicological characterization within biological matrices was developed. This Versatile Engineered Nanomaterial Generation System (VENGES) is based on industry-relevant, flame spray pyrolysis aerosol reactors that can scaleably produce ENMs with controlled primary and aggregate particle size, crystallinity, and morphology. ENMs are produced continuously in the gas phase, allowing their continuous transfer to inhalation chambers, without altering their state of agglomeration. Freshly generated ENMs are also collected on Teflon filters for subsequent physicochemical and morphological characterization and for in vitro toxicological studies. The ability of the VENGES system to generate families of ENMs of pure and selected mixtures of iron oxide, silica, and nanosilver with controlled physicochemical properties was demonstrated using a range of state-of-the-art-techniques. Specific surface area was measured by nitrogen adsorption using the Brunauer–Emmett–Teller method, and crystallinity was characterized by X-ray diffraction. Particle morphology and size were evaluated by scanning and transmission electron microscopy. The suitability of the VENGES system for toxicological studies was also shown in both in vivo and in vitro studies involving Sprague–Dawley rats and human alveolar-like monocyte derived macrophages, respectively. We demonstrated linkage between physicochemical ENM properties and potential toxicity.


PLOS ONE | 2009

Heterogeneity in Macrophage Phagocytosis of Staphylococcus aureus Strains: High-Throughput Scanning Cytometry-Based Analysis

Glen DeLoid; Timothy H. Sulahian; Amy Imrich; Lester Kobzik

Alveolar macrophages (AMs) can phagocytose unopsonized pathogens such as S. aureus via innate immune receptors, such as scavenger receptors (SRs). Cytoskeletal events and signaling pathways involved in phagocytosis of unopsonized bacteria likely govern the fate of ingested pathogens, but are poorly characterized. We have developed a high-throughput scanning cytometry-based assay to quantify phagocytosis of S. aureus by adherent human blood-derived AM-like macrophages in a 96-well microplate format. Differential fluorescent labeling of internalized vs. bound bacteria or beads allowed automated image analysis of collapsed confocal stack images acquired by scanning cytometry, and quantification of total particles bound and percent of particles internalized. We compared the effects of the classic SR blocker polyinosinic acid, the cytoskeletal inhibitors cytochalasin D and nocodazole, and the signaling inhibitors staurosporine, Gö 6976, JNK Inhibitor I and KN-93, on phagocytosis of a panel of live unopsonized S. aureus strains, (Wood, Seattle 1945 (ATCC 25923), and RN6390), as well as a commercial killed Wood strain, heat-killed Wood strain and latex beads. Our results revealed failure of the SR inhibitor polyinosinic acid to block binding of any live S. aureus strains, suggesting that SR-mediated uptake of a commercial killed fluorescent bacterial particle does not accurately model interaction with viable bacteria. We also observed heterogeneity in the effects of cytoskeletal and signaling inhibitors on internalization of different S. aureus strains. The data suggest that uptake of unopsonized live S. aureus by human macrophages is not mediated by SRs, and that the cellular mechanical and signaling processes that mediate S. aureus phagocytosis vary. The findings also demonstrate the potential utility of high-throughput scanning cytometry techniques to study phagocytosis of S. aureus and other organisms in greater detail.


Environmental science. Nano | 2014

A chemical free, nanotechnology-based method for airborne bacterial inactivation using engineered water nanostructures

Georgios Pyrgiotakis; James McDevitt; André Bordini; Edgar A. Diaz; Ramon M. Molina; Christa Watson; Glen DeLoid; Steve Lenard; Natalie R. Fix; Yosuke Mizuyama; Toshiyuki Yamauchi; Joseph D. Brain; Philip Demokritou

Airborne pathogens are associated with the spread of infectious diseases and increased morbidity and mortality. Herein we present an emerging chemical free, nanotechnology-based method for airborne pathogen inactivation. This technique is based on transforming atmospheric water vapor into Engineered Water Nano-Structures (EWNS) via electrospray. The generated EWNS possess a unique set of physical, chemical, morphological and biological properties. Their average size is 25 nm and they contain reactive oxygen species (ROS) such as hydroxyl and superoxide radicals. In addition, EWNS are highly electrically charged (10 electrons per particle on average). A link between their electric charge and the reduction of their evaporation rate was illustrated resulting in an extended lifetime (over an hour) at room conditions. Furthermore, it was clearly demonstrated that the EWNS have the ability to interact with and inactivate airborne bacteria. Finally, inhaled EWNS were found to have minimal toxicological effects, as illustrated in an acute in-vivo inhalation study using a mouse model. In conclusion, this novel, chemical free, nanotechnology-based method has the potential to be used in the battle against airborne infectious diseases.


PLOS ONE | 2012

Genome-wide RNAi screen in IFN-γ-treated human macrophages identifies genes mediating resistance to the intracellular pathogen Francisella tularensis.

Hongwei Zhou; Glen DeLoid; Erica Browning; David J. Gregory; Fengxiao Tan; Alice S. Bedugnis; Amy Imrich; Henry Koziel; Igor Kramnik; Quan Lu; Lester Kobzik

Interferon-gamma (IFN-γ) inhibits intracellular replication of Francisella tularensis in human monocyte-derived macrophages (HMDM) and in mice, but the mechanisms of this protective effect are poorly characterized. We used genome-wide RNA interference (RNAi) screening in the human macrophage cell line THP-1 to identify genes that mediate the beneficial effects of IFN-γ on F. tularensis infection. A primary screen identified ∼200 replicated candidate genes. These were prioritized according to mRNA expression in IFN-γ-primed and F. tularensis-challenged macrophages. A panel of 20 top hits was further assessed by re-testing using individual shRNAs or siRNAs in THP-1 cells, HMDMs and primary human lung macrophages. Six of eight validated genes tested were also found to confer resistance to Listeria monocytogenes infection, suggesting a broadly shared host gene program for intracellular pathogens. The F. tularensis-validated hits included ‘druggable’ targets such as TNFRSF9, which encodes CD137. Treating HMDM with a blocking antibody to CD137 confirmed a beneficial role of CD137 in macrophage clearance of F. tularensis. These studies reveal a number of important mediators of IFN-γ activated host defense against intracellular pathogens, and implicate CD137 as a potential therapeutic target and regulator of macrophage interactions with Francisella tularensis.

Collaboration


Dive into the Glen DeLoid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Julian McClements

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hang Xiao

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge