Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip Demokritou is active.

Publication


Featured researches published by Philip Demokritou.


Environmental Health | 2008

A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: the effect of short-term changes in air pollution and dust storms

Nicos Middleton; Panayiotis K. Yiallouros; Savvas Kleanthous; Ourania Kolokotroni; Joel Schwartz; Douglas W. Dockery; Philip Demokritou; Petros Koutrakis

BackgroundTo date, a substantial body of research has shown adverse health effects of short-term changes in levels of air pollution. Such associations have not been investigated in smaller size cities in the Eastern Mediterranean. A particular feature in the region is dust blown from the Sahara a few times a year resulting in extreme PM10 concentrations. It is not entirely clear whether such natural phenomena pose the same risks.MethodsThe effect of changes in daily levels of particulate matter (PM10) and ozone (O3) on hospitalization for all, cardiovascular and respiratory causes in the two hospitals in Nicosia during 1 January 1995 and 30 December 2004 was investigated using generalized additive Poisson models after controlling for long- and short-term patterns as well as for the effect of weather. Meteorological records were reviewed to identify dust-storm days and analyses were repeated to quantify their effect on cardio-respiratory morbidity.ResultsFor every 10 μg/m3 increase in daily average PM10 concentrations, there was a 0.9% (95%CI: 0.6%, 1.2%) increase in all-cause and 1.2% (95%CI: -0.0%, 2.4%) increase in cardiovascular admissions. With respect to respiratory causes, an effect was observed only in the warm months. No lagged effects with levels of PM10 were observed. In contrast, positive associations with levels of ozone were only observed the two days prior to admission. These appeared stronger for cardiovascular causes and independent of the effect of PM. All-cause and cardiovascular admissions were 4.8% (95%CI: 0.7%, 9.0%) and 10.4% (95%CI: -4.7%, 27.9%) higher on dust storm days respectively. In both cases the magnitude of effect was comparable to that seen on the quartile of non-storm days with the highest levels of PM10.ConclusionWe observed an increased risk of hospitalization at elevated levels of particulate matter and ozone generally consistent with the magnitude seen across several European cities. We also observed an increased risk of hospitalization on dust storm days, particularly for cardiovascular causes. While inference from these associations is limited due to the small number of dust storm days in the study period, it would appear imperative to issue health warnings for these natural events, particularly directed towards vulnerable population groups.


Nature Communications | 2014

Estimating the effective density of engineered nanomaterials for in vitro dosimetry

Glen DeLoid; Joel M. Cohen; Tom Darrah; Raymond Derk; Liying Rojanasakul; Georgios Pyrgiotakis; Wendel Wohlleben; Philip Demokritou

The need for accurate in vitro dosimetry remains a major obstacle to the development of cost-effective toxicological screening methods for engineered nanomaterials. An important key to accurate in vitro dosimetry is the characterization of sedimentation and diffusion rates of nanoparticles suspended in culture media, which largely depend upon the effective density and diameter of formed agglomerates in suspension. Here we present a rapid and inexpensive method for accurately measuring the effective density of nano-agglomerates in suspension. This novel method is based on the volume of the pellet obtained by bench-top centrifugation of nanomaterial suspensions in a packed cell volume tube, and is validated against gold-standard analytical ultracentrifugation data. This simple and cost-effective method allows nanotoxicologists to correctly model nanoparticle transport, and thus attain accurate dosimetry in cell culture systems, which will greatly advance the development of reliable and efficient methods for toxicological testing and investigation of nano-bio interactions in vitro.


Nanotoxicology | 2013

Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry.

Joel E. Cohen; Glen DeLoid; Georgios Pyrgiotakis; Philip Demokritou

Abstract In vitro toxicity assays are efficient and inexpensive tools for screening the increasing number of engineered nanomaterials (ENMs) entering the consumer market. However, the data produced by in vitro studies often vary substantially among different studies and from in vivo data. In part, these discrepancies may be attributable to lack of standardisation in dispersion protocols and inadequate characterisation of particle–media interactions which may affect the particle kinetics and the dose delivered to cells. In this study, a novel approach for preparation of monodisperse, stabilised liquid suspensions is presented and coupled with a numerical model which estimates delivered dose values. Empirically derived material- and media-specific functions are presented for each media–ENM system that can be used to convert administered doses to delivered doses. The interactions of ENMs with a variety of physiologic media were investigated and the importance of this approach was demonstrated by in vitro cytotoxicity assays using THP-1 macrophages.


Particle and Fibre Toxicology | 2014

An integrated approach for the in vitro dosimetry of engineered nanomaterials

Joel M. Cohen; Justin G. Teeguarden; Philip Demokritou

BackgroundThere is a great need for screening tools capable of rapidly assessing nanomaterial toxicity. One impediment to the development of reliable in vitro screening methods is the need for accurate measures of cellular dose. We present here a methodology that enables accurate determination of delivered to cell dose metrics. This methodology includes (1) standardization of engineered nanomaterial (ENM) suspension preparation; (2) measurement of ENM characteristics controlling delivery to cells in culture; and (3) calculation of delivered dose as a function of exposure time using the ISDD model. The approach is validated against experimentally measured doses, and simplified analytical expressions for the delivered dose (Relevant In Vitro Dose (RID)f function) are derived for 20 ENMs. These functions can be used by nanotoxicologists to accurately calculate the total mass (RIDM), surface area (RIDSA), or particle number (RIDN) delivered to cells as a function of exposure time.ResultsThe proposed methodology was used to derive the effective density, agglomerate diameter and RID functions for 17 industrially-relevant metal and metal oxide ENMs, two carbonaceous nanoparticles, and non-agglomerating gold nanospheres, for two well plate configurations (96 and 384 well plates). For agglomerating ENMs, the measured effective density was on average 60% below the material density. We report great variability in delivered dose metrics, with some materials depositing within 24 hours while others require over 100 hours for delivery to cells. A neutron-activated tracer particle system was employed to validate the proposed in vitro dosimetry methodology for a number of ENMs (measured delivered to cell dose within 9% of estimated).ConclusionsOur findings confirm and extend experimental and computational evidence that agglomerate characteristics affect the dose delivered to cells. Therefore measurement of these characteristics is critical for effective use of in vitro systems for nanotoxicology. The mixed experimental/computational approach to cellular dosimetry proposed and validated here can be used by nanotoxicologists to accurately calculate the delivered to cell dose metrics for various ENMs and in vitro conditions as a function of exposure time. The RID functions and characterization data for widely used ENMs presented here can together be used by experimentalists to design and interpret toxicity studies.


Nanotoxicology | 2013

An in vivo and in vitro toxicological characterisation of realistic nanoscale CeO2 inhalation exposures

Philip Demokritou; Samuel Gass; Georgios Pyrgiotakis; Joel M. Cohen; William T. Goldsmith; Walt McKinney; David G. Frazer; Jane Ma; Diane Schwegler-Berry; Joseph D. Brain; Vincent Castranova

Abstract Nanoscale CeO2 is increasingly used for industrial and commercial applications, including catalysis, UV-shielding and as an additive in various nanocomposites. Because of its increasing potential for consumer and occupational exposures, a comprehensive toxicological characterisation of this nanomaterial is needed. Preliminary results from intratracheal instillation studies in rats point to cytotoxicity and inflammation, though these studies may not accurately use realistic nanoscale exposure profiles. By contrast, published in vitro cellular studies have reported limited toxicological outcomes for the case of nano-ceria. Here, the authors present an integrative study evaluating the toxicity of nanoscale CeO2 both in vitro, using the A549 lung epithelial cell line, and in vivo using an intact rat model. Realistic nano-ceria exposure atmospheres were generated using the Harvard Versatile Engineered Nanomaterial Generation System (VENGES), and rats were exposed via inhalation. Finally, the use of a nanothin amorphous SiO2 encapsulation coating as a means of mitigating CeO2 toxicity was assessed. Results from the inhalation experiments show lung injury and inflammation with increased PMN and LDH levels in the bronchoalveolar lavage fluid of the CeO2-exposed rats. Moreover, exposure to SiO2-coated CeO2 did not induce any pulmonary toxicity to the animals, representing clear evidence for the safe by design SiO2-encapsualtion concept.


Aerosol Science and Technology | 2002

Development of a High Volume Cascade Impactor for Toxicological and Chemical Characterization Studies

Philip Demokritou; Ilias G. Kavouras; Stephen T. Ferguson; Petros Koutrakis

This paper presents the design and development of a compact high volume cascade impactor (HVCI). The HVCI operates at a flow rate of 900 l/min and consists of 4 impaction stages equipped with circular slit-shaped acceleration nozzles and a backup filter. The backup filter is placed downstream of the fourth stage and is used to collect the ultrafine particles ( d p < 0.1 w m). The major feature of this novel sampler is its ability to collect relatively large amounts of particles (mg-g levels) onto relatively small polyurethane foam substrates without using adhesives. As previously reported, the capacity of the impaction substrate is 2.15 g of collected particles per cm 2 of foam. Although the impaction substrates are not coated with adhesives such as grease or mineral oil, particle bounce and re-entrainment losses were found not to be significant. Particles can be easily recovered from the foam substrates using aqueous extraction. The impactor was calibrated using polydisperse particles. The 50% cutpoints of the 4 stages were 9.90, 2.46, 1.0, and 0.1 w m, respectively. Interstage losses of ultrafine and fine particles were < 10% and for coarse particles were < 20%. The pressure drop across the 4 stages and the backup filter were 0.25, 0.75, 1.25, 19.9, and 3.3 kPa, respectively.


Aerosol Science and Technology | 2001

Development and laboratory performance evaluation of a personal multipollutant sampler for simultaneous measurements of particulate and gaseous pollutants

Philip Demokritou; Ilias G. Kavouras; Stephen T. Ferguson; Petros Koutrakis

A personal multipollutant sampler has been developed. This sampler can be used for measuring exposures to particulate matter and criteria gases. The system uses asingle personalsampling pump that operates at a flow rate of 5.2 l/min. The basic unit consists of two impaction-based samplers for PM2.5 and PM10 attached to a single elutriator. Two mini PM2.5 samplers are also attached to the elutriator for organic carbon (OC), elemental carbon (EC), sulfate, and nitrate measurements. For the collection of nitrate and sulfate, the minisampler includes a miniaturized honeycomb glass denuder that is placed upstream of the filter to remove nitric acid and sulfur dioxide and to minimize artifacts. Two passive samplers can also be attached to the elutriator for measurements of gaseous copollutants such as O3, SO2, and NO2. The performance of the multipollutant sampler was examined through a series of laboratory chamber tests. The results showed a good agreement between the multipollutant sampler and the reference methods. The overall sampler performance demonstrates its suitability for personal exposure assessment studies.


Nanotoxicology | 2013

Physicochemical and morphological characterisation of nanoparticles from photocopiers: implications for environmental health

Dhimiter Bello; John Martin; Christopher Santeufemio; Qingwei Sun; Kl Bunker; Martin M. Shafer; Philip Demokritou

Abstract Several reports link printing and photocopying with genotoxicity, immunologic and respiratory diseases. Photocopiers and printers emit nanoparticles, which may be involved in these diseases. The physicochemical and morphological composition of these emitted nanoparticles, which is poorly understood and is critical for toxicological evaluations, was assessed in this study using both real-time instrumentation and analytical methods. Tests included elemental composition (40 metals), semi-volatile organics (100 compounds) and single particle analysis, using multiple high-sensitivity/resolution techniques. Identical analyses were performed on the toners and dust collected from copiers exhaust filter. Engineered nanoparticles, including titanium dioxide, iron oxide and fumed silica, and several metals were found in toners and airborne nanoscale fraction. Chemical composition of airborne nanoscale fraction was complex and reflected toner chemistry. These findings are important in understanding the origin and toxicology of such nanoparticles. Further investigation of their chemistry, larger scale exposure studies and thorough toxicological characterisation of emitted nanoparticles is needed.


Particle and Fibre Toxicology | 2015

Advanced computational modeling for in vitro nanomaterial dosimetry.

Glen DeLoid; Joel M. Cohen; Georgios Pyrgiotakis; Sandra V. Pirela; Anoop K. Pal; Jiying Liu; Jelena Srebric; Philip Demokritou

BackgroundAccurate and meaningful dose metrics are a basic requirement for in vitro screening to assess potential health risks of engineered nanomaterials (ENMs). Correctly and consistently quantifying what cells “see,” during an in vitro exposure requires standardized preparation of stable ENM suspensions, accurate characterizatoin of agglomerate sizes and effective densities, and predictive modeling of mass transport. Earlier transport models provided a marked improvement over administered concentration or total mass, but included assumptions that could produce sizable inaccuracies, most notably that all particles at the bottom of the well are adsorbed or taken up by cells, which would drive transport downward, resulting in overestimation of deposition.MethodsHere we present development, validation and results of two robust computational transport models. Both three-dimensional computational fluid dynamics (CFD) and a newly-developed one-dimensional Distorted Grid (DG) model were used to estimate delivered dose metrics for industry-relevant metal oxide ENMs suspended in culture media. Both models allow simultaneous modeling of full size distributions for polydisperse ENM suspensions, and provide deposition metrics as well as concentration metrics over the extent of the well. The DG model also emulates the biokinetics at the particle-cell interface using a Langmuir isotherm, governed by a user-defined dissociation constant, KD, and allows modeling of ENM dissolution over time.ResultsDose metrics predicted by the two models were in remarkably close agreement. The DG model was also validated by quantitative analysis of flash-frozen, cryosectioned columns of ENM suspensions. Results of simulations based on agglomerate size distributions differed substantially from those obtained using mean sizes. The effect of cellular adsorption on delivered dose was negligible for KD values consistent with non-specific binding (> 1 nM), whereas smaller values (≤ 1 nM) typical of specific high-affinity binding resulted in faster and eventual complete deposition of material.ConclusionsThe advanced models presented provide practical and robust tools for obtaining accurate dose metrics and concentration profiles across the well, for high-throughput screening of ENMs. The DG model allows rapid modeling that accommodates polydispersity, dissolution, and adsorption. Result of adsorption studies suggest that a reflective lower boundary condition is appropriate for modeling most in vitro ENM exposures.


Nature Protocols | 2017

Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials

Glen DeLoid; Joel M. Cohen; Georgios Pyrgiotakis; Philip Demokritou

Evidence continues to grow of the importance of in vitro and in vivo dosimetry in the hazard assessment and ranking of engineered nanomaterials (ENMs). Accurate dose metrics are particularly important for in vitro cellular screening to assess the potential health risks or bioactivity of ENMs. To ensure meaningful and reproducible quantification of in vitro dose, with consistent measurement and reporting between laboratories, it is necessary to adopt standardized and integrated methodologies for (i) generation of stable ENM suspensions in cell culture media; (ii) colloidal characterization of suspended ENMs, particularly of properties that determine particle kinetics in an in vitro system (size distribution and formed agglomerate effective density); and (iii) robust numerical fate and transport modeling for accurate determination of the ENM dose delivered to cells over the course of the in vitro exposure. Here we present an integrated comprehensive protocol based on such a methodology for in vitro dosimetry, including detailed standardized procedures for each of these three critical aims. The entire protocol requires ∼6–12 h to complete.

Collaboration


Dive into the Philip Demokritou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dhimiter Bello

University of Massachusetts Lowell

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilias G. Kavouras

University of Arkansas for Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge