Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glen W. Young is active.

Publication


Featured researches published by Glen W. Young.


Circulation Research | 2006

Regulation of Murine Cardiac 20S Proteasomes. Role of Associating Partners

Chenggong Zong; Aldrin V. Gomes; Oliver Drews; Xiaohai Li; Glen W. Young; Beniam Berhane; Xin Qiao; Samuel W. French; Fawzia Bardag-Gorce; Peipei Ping

Our recent studies have provided a proteomic blueprint of the 26S proteasome complexes in the heart, among which 20S proteasomes were found to contain cylinder-shaped structures consisting of both α and β subunits. These proteasomes exhibit a number of features unique to the myocardium, including striking differences in post-translational modifications (PTMs) of individual subunits and novel PTMs that have not been previously reported. To date, mechanisms contributing to the regulation of this myocardial proteolytic core system remain largely undefined; in particular, little is known regarding PTM-dependent regulation of cardiac proteasomes. In this investigation, we seek to elucidate the function and regulation of 20S proteasome complexes in the heart. Functionally viable murine cardiac 20S proteasomes were purified. Tandem mass spectrometry analyses, combined with native gel electrophoresis, immunoprecipitation, and immunoblotting, revealed the identification of 2 previously unrecognized functional partners in the endogenous intact cardiac 20S complexes: protein phosphatase 2A (PP2A), and protein kinase A (PKA). Furthermore, our results demonstrated that PP2A and PKA profoundly impact the proteolytic function of 20S proteasomes: phosphorylation of 20S complexes enhances the peptidase activity of individual subunits in a substrate-specific fashion. Moreover, inhibition of PP2A or the addition of PKA significantly modified both the serine- and threonine-phosphorylation profile of proteasomes; multiple individual subunits of 20S (eg, α1 and β2) were targets of PP2A and PKA. Taken together, these studies provide the first demonstration that the function of cardiac 20S proteasomes is modulated by associating partners and that phosphorylation may serve as a key mechanism for regulation.


Molecular & Cellular Proteomics | 2011

Phosphoproteome analysis reveals regulatory sites in major pathways of cardiac mitochondria

Ning Deng; Jun Zhang; Chenggong Zong; Yueju Wang; Haojie Lu; Pengyuan Yang; Wenhai Wang; Glen W. Young; Yibin Wang; Paavo Korge; Christopher Lotz; Philip Doran; David A. Liem; Rolf Apweiler; James N. Weiss; Huilong Duan; Peipei Ping

Mitochondrial functions are dynamically regulated in the heart. In particular, protein phosphorylation has been shown to be a key mechanism modulating mitochondrial function in diverse cardiovascular phenotypes. However, site-specific phosphorylation information remains scarce for this organ. Accordingly, we performed a comprehensive characterization of murine cardiac mitochondrial phosphoproteome in the context of mitochondrial functional pathways. A platform using the complementary fragmentation technologies of collision-induced dissociation (CID) and electron transfer dissociation (ETD) demonstrated successful identification of a total of 236 phosphorylation sites in the murine heart; 210 of these sites were novel. These 236 sites were mapped to 181 phosphoproteins and 203 phosphopeptides. Among those identified, 45 phosphorylation sites were captured only by CID, whereas 185 phosphorylation sites, including a novel modification on ubiquinol-cytochrome c reductase protein 1 (Ser-212), were identified only by ETD, underscoring the advantage of a combined CID and ETD approach. The biological significance of the cardiac mitochondrial phosphoproteome was evaluated. Our investigations illustrated key regulatory sites in murine cardiac mitochondrial pathways as targets of phosphorylation regulation, including components of the electron transport chain (ETC) complexes and enzymes involved in metabolic pathways (e.g. tricarboxylic acid cycle). Furthermore, calcium overload injured cardiac mitochondrial ETC function, whereas enhanced phosphorylation of ETC via application of phosphatase inhibitors restored calcium-attenuated ETC complex I and complex III activities, demonstrating positive regulation of ETC function by phosphorylation. Moreover, in silico analyses of the identified phosphopeptide motifs illuminated the molecular nature of participating kinases, which included several known mitochondrial kinases (e.g. pyruvate dehydrogenase kinase) as well as kinases whose mitochondrial location was not previously appreciated (e.g. Src). In conclusion, the phosphorylation events defined herein advance our understanding of cardiac mitochondrial biology, facilitating the integration of the still fragmentary knowledge about mitochondrial signaling networks, metabolic pathways, and intrinsic mechanisms of functional regulation in the heart.


Molecular & Cellular Proteomics | 2009

Contrasting Proteome Biology and Functional Heterogeneity of the 20 S Proteasome Complexes in Mammalian Tissues

Aldrin V. Gomes; Glen W. Young; Yueju Wang; Chenggong Zong; Mansoureh Eghbali; Oliver Drews; Haojie Lu; Enrico Stefani; Peipei Ping

The 20 S proteasome complexes are major contributors to the intracellular protein degradation machinery in mammalian cells. Systematic administration of proteasome inhibitors to combat disease (e.g. cancer) has resulted in positive outcomes as well as adversary effects. The latter was attributed to, at least in part, a lack of understanding in the organ-specific responses to inhibitors and the potential diversity of proteomes of these complexes in different tissues. Accordingly, we conducted a proteomic study to characterize the 20 S proteasome complexes and their postulated organ-specific responses in the heart and liver. The cardiac and hepatic 20 S proteasomes were isolated from the same mouse strain with identical genetic background. We examined the molecular composition, complex assembly, post-translational modifications and associating partners of these proteasome complexes. Our results revealed an organ-specific molecular organization of the 20 S proteasomes with distinguished patterns of post-translational modifications as well as unique complex assembly characteristics. Furthermore, the proteome diversities are concomitant with a functional heterogeneity of the proteolytic patterns exhibited by these two organs. In particular, the heart and liver displayed distinct activity profiles to two proteasome inhibitors, epoxomicin and Z-Pro-Nle-Asp-H. Finally, the heart and liver demonstrated contrasting regulatory mechanisms from the associating partners of these proteasomes. The functional heterogeneity of the mammalian 20 S proteasome complexes underscores the concept of divergent proteomes among organs in the context of an identical genome.


Journal of Molecular and Cellular Cardiology | 2009

PROTEOMIC AND METABOLOMIC ANALYSIS OF CARDIOPROTECTION: INTERPLAY BETWEEN PROTEIN KINASE C EPSILON AND DELTA IN REGULATING GLUCOSE METABOLISM OF MURINE HEARTS

Manuel Mayr; David A. Liem; Jun Zhang; Xiaohai Li; Nuraly K. Avliyakulov; Jeong In Yang; Glen W. Young; Tom M. Vondriska; Christophe Ladroue; Basetti Madhu; John R. Griffiths; Aldrin V. Gomes; Qingbo Xu; Peipei Ping

We applied a combined proteomic and metabolomic approach to obtain novel mechanistic insights in PKCvarepsilon-mediated cardioprotection. Mitochondrial and cytosolic proteins from control and transgenic hearts with constitutively active or dominant negative PKCvarepsilon were analyzed using difference in-gel electrophoresis (DIGE). Among the differentially expressed proteins were creatine kinase, pyruvate kinase, lactate dehydrogenase, and the cytosolic isoforms of aspartate amino transferase and malate dehydrogenase, the two enzymatic components of the malate aspartate shuttle, which are required for the import of reducing equivalents from glycolysis across the inner mitochondrial membrane. These enzymatic changes appeared to be dependent on PKCvarepsilon activity, as they were not observed in mice expressing inactive PKCvarepsilon. High-resolution proton nuclear magnetic resonance ((1)H-NMR) spectroscopy confirmed a pronounced effect of PKCvarepsilon activity on cardiac glucose and energy metabolism: normoxic hearts with constitutively active PKCvarepsilon had significantly lower concentrations of glucose, lactate, glutamine and creatine, but higher levels of choline, glutamate and total adenosine nucleotides. Moreover, the depletion of cardiac energy metabolites was slower during ischemia/reperfusion injury and glucose metabolism recovered faster upon reperfusion in transgenic hearts with active PKCvarepsilon. Notably, inhibition of PKCvarepsilon resulted in compensatory phosphorylation and mitochondrial translocation of PKCdelta. Taken together, our findings are the first evidence that PKCvarepsilon activity modulates cardiac glucose metabolism and provide a possible explanation for the synergistic effect of PKCdelta and PKCvarepsilon in cardioprotection.


Molecular & Cellular Proteomics | 2008

Revealing the Dynamics of the 20 S Proteasome Phosphoproteome A Combined CID and Electron Transfer Dissociation Approach

Haojie Lu; Chenggong Zong; Yueju Wang; Glen W. Young; Ning Deng; Pete Souda; Xiaohai Li; Julian P. Whitelegge; Oliver Drews; Pengyuan Yang; Peipei Ping

The 20 S proteasomes play a critical role in intracellular homeostasis and stress response. Their function is tuned by covalent modifications, such as phosphorylation. In this study, we performed a comprehensive characterization of the phosphoproteome for the 20 S proteasome complexes in both the murine heart and liver. A platform combining parallel approaches in differential sample fractionation (SDS-PAGE, IEF, and two-dimensional electrophoresis), enzymatic digestion (trypsin and chymotrypsin), phosphopeptide enrichment (TiO2), and peptide fragmentation (CID and electron transfer dissociation (ETD)) has proven to be essential for identifying low abundance phosphopeptides. As a result, a total of 52 phosphorylation identifications were made in mammalian tissues; 44 of them were novel. These identifications include single (serine, threonine, and tyrosine) and dual phosphorylation peptides. 34 phosphopeptides were identified by CID; 10 phosphopeptides, including a key modification on the catalytically essential β5 subunit, were identified only by ETD; eight phosphopeptides were shared identifications by both CID and ETD. Besides the commonly shared phosphorylation sites, unique sites were detected in the murine heart and liver, documenting variances in phosphorylation between tissues within the proteasome populations. Furthermore the biological significance of these 20 S phosphoproteomes was evaluated. The role of cAMP-dependent protein kinase A (PKA) to modulate these phosphoproteomes was examined. Using a proteomics approach, many of the cardiac and hepatic 20 S subunits were found to be substrate targets of PKA. Incubation of the intact 20 S proteasome complexes with active PKA enhanced phosphorylation in both existing PKA phosphorylation sites as well as novel sites in these 20 S subunits. Furthermore treatment with active PKA significantly elevated all three peptidase activities (β1 caspase-like, β2 trypsin-like, and β5 chymotrypsin-like), demonstrating a functional role of PKA in governing these 20 S phosphoproteomes.


Proteomics | 2008

Two-dimensional electrophoresis-based characterization of post-translational modifications of mammalian 20S proteasome complexes

Chenggong Zong; Glen W. Young; Yueju Wang; Haojie Lu; Ning Deng; Oliver Drews; Peipei Ping

PTMs serve as key regulatory mechanisms for 20S proteasome functions. Alterations in 20S PTMs have been previously observed with changes in modified protein degradation patterns and altered cellular phenotypes. Despite decades of investigation, our knowledge pertaining to the various PTMs of 20S complexes and their biological significance remain limited. In this investigation, we show that 2‐DE offers an analytical tool with high resolution and reproducibility. Accordingly, it has been applied for the characterization of PTMs including glycosylation, phosphorylation, oxidation, and nitrosylation. The PTMs of murine cardiac 20S proteasomes and their associating proteins were examined. Our 2‐DE analyses displayed over 25 spots for the 20S complexes (17 subunits), indicating multiply modified subunits of cardiac proteasomes. The identification of specific PTM sites subsequent to 2‐DE was supported by MS. These PTMs included phosphorylation and oxidation. Most of the PTMs occurred in low stoichiometry and required enrichment to enhance the detection sensitivity. In conclusion, our studies support 2‐DE as a central tool in the analyses of 20S proteasome PTMs. The approaches utilized in this investigation demonstrate their application in mapping the PTMs of the 20S proteasomes in cardiac tissue, which are applicable to other samples and biological conditions.


Annals of the New York Academy of Sciences | 2005

The Murine Cardiac 26S Proteasome: An Organelle Awaiting Exploration

Aldrin V. Gomes; Chenggong Zong; Ricky D. Edmondson; Beniam Berhane; Guang Wu Wang; Steven Q. Le; Glen W. Young; Jun Zhang; Thomas M. Vondriska; Julian P. Whitelegge; Richard C. Jones; Irving G. Joshua; Sheeno Thyparambil; Dawn Pantaleon; Joe Qiao; Joseph A. Loo; Peipei Ping

Abstract: Multiprotein complexes have been increasingly recognized as essential functional units for a variety of cellular processes, including the protein degradation system. Selective degradation of proteins in eukaryotes is primarily conducted by the ubiquitin proteasome system. The current knowledge base, pertaining to the proteasome complexes in mammalian cells, relies largely upon information gained in the yeast system, where the 26S proteasome is hypothesized to contain a 20S multiprotein core complex and one or two 19S regulatory complexes. To date, the molecular structure of the proteasome system, the proteomic composition of the entire 26S multiprotein complexes, and the specific designated function of individual components within this essential protein degradation system in the heart remain virtually unknown. A functional proteomic approach, employing multidimensional chromatography purification combined with liquid chromatography tandem mass spectrometry and protein chemistry, was utilized to explore the murine cardiac 26S proteasome system. This article presents an overview on the subject of protein degradation in mammalian cells. In addition, this review shares the limited information that has been garnered thus far pertaining to the molecular composition, function, and regulation of this important organelle in the cardiac cells.


Trends in Cardiovascular Medicine | 2008

Understanding proteasome assembly and regulation: importance to cardiovascular medicine.

Glen W. Young; Yueju Wang; Peipei Ping

The cardiac proteasome is increasingly recognized as a complex, heterogeneous, and dynamic organelle contributing to the modulation of cardiac function in health and diseases. The emerging picture of the proteasome system reveals a highly regulated and organized molecular machine integrated into multiple biologic processes of the cell. Full appreciation of its cardiovascular relevance requires an understanding of its proteolytic function as well as its underlying regulatory mechanisms, of which assembly, stoichiometry, posttranslational modification, and the role of the associating partners are increasingly poignant.


Archive | 2008

Revealing the Dynamics of the 20 S Proteasome Phosphoproteome

Haojie Lu; Chenggong Zong; Yueju Wang; Glen W. Young; Ning Deng; Pete Souda; Xiaohai Li; Julian P. Whitelegge; Oliver Drews; Pengyuan Yang; Peipei Ping


Journal of Molecular and Cellular Cardiology | 2007

WITHDRAWN: Proteasome heterogeneity in cardiac tissue

Oliver Drews; Chenggong Zong; Xiaohai Li; Aldrin V. Gomes; Zhen Li; Glen W. Young; Peipei Ping

Collaboration


Dive into the Glen W. Young's collaboration.

Top Co-Authors

Avatar

Peipei Ping

University of California

View shared research outputs
Top Co-Authors

Avatar

Chenggong Zong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver Drews

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiaohai Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Yueju Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Liem

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge