Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glenn R. Almany is active.

Publication


Featured researches published by Glenn R. Almany.


Coral Reefs | 2009

Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges

Geoffrey P. Jones; Glenn R. Almany; Garry R. Russ; Peter F. Sale; Robert S. Steneck; M. J. H. van Oppen; Bette L. Willis

The extent of larval dispersal on coral reefs has important implications for the persistence of coral reef metapopulations, their resilience and recovery from an increasing array of threats, and the success of protective measures. This article highlights a recent dramatic increase in research effort and a growing diversity of approaches to the study of larval retention within (self-recruitment) and dispersal among (connectivity) isolated coral reef populations. Historically, researchers were motivated by alternative hypotheses concerning the processes limiting populations and structuring coral reef assemblages, whereas the recent impetus has come largely from the need to incorporate dispersal information into the design of no-take marine protected area (MPA) networks. Although the majority of studies continue to rely on population genetic approaches to make inferences about dispersal, a wide range of techniques are now being employed, from small-scale larval tagging and paternity analyses, to large-scale biophysical circulation models. Multiple approaches are increasingly being applied to cross-validate and provide more realistic estimates of larval dispersal. The vast majority of empirical studies have focused on corals and fishes, where evidence for both extremely local scale patterns of self-recruitment and ecologically significant connectivity among reefs at scales of tens of kilometers (and in some cases hundreds of kilometers) is accumulating. Levels of larval retention and the spatial extent of connectivity in both corals and fishes appear to be largely independent of larval duration or reef size, but may be strongly influenced by geographic setting. It is argued that high levels of both self-recruitment and larval import can contribute to the resilience of reef populations and MPA networks, but these benefits will erode in degrading reef environments.


Current Biology | 2012

Larval export from marine reserves and the recruitment benefit for fish and fisheries

Hugo B. Harrison; David H. Williamson; Richard D. Evans; Glenn R. Almany; Simon R. Thorrold; Garry R. Russ; Kevin A. Feldheim; Lynne van Herwerden; Serge Planes; Maya Srinivasan; Michael L. Berumen; Geoffrey P. Jones

Marine reserves, areas closed to all forms of fishing, continue to be advocated and implemented to supplement fisheries and conserve populations. However, although the reproductive potential of important fishery species can dramatically increase inside reserves, the extent to which larval offspring are exported and the relative contribution of reserves to recruitment in fished and protected populations are unknown. Using genetic parentage analyses, we resolve patterns of larval dispersal for two species of exploited coral reef fish within a network of marine reserves on the Great Barrier Reef. In a 1,000 km(2) study area, populations resident in three reserves exported 83% (coral trout, Plectropomus maculatus) and 55% (stripey snapper, Lutjanus carponotatus) of assigned offspring to fished reefs, with the remainder having recruited to natal reserves or other reserves in the region. We estimate that reserves, which account for just 28% of the local reef area, produced approximately half of all juvenile recruitment to both reserve and fished reefs within 30 km. Our results provide compelling evidence that adequately protected reserve networks can make a significant contribution to the replenishment of populations on both reserve and fished reefs at a scale that benefits local stakeholders.


Coral Reefs | 2009

Connectivity, biodiversity conservation and the design of marine reserve networks for coral reefs

Glenn R. Almany; Sean R. Connolly; Daniel D. Heath; J. D. Hogan; Geoffrey P. Jones; Morena Mills; Robert L. Pressey; David H. Williamson

Networks of no-take reserves are important for protecting coral reef biodiversity from climate change and other human impacts. Ensuring that reserve populations are connected to each other and non-reserve populations by larval dispersal allows for recovery from disturbance and is a key aspect of resilience. In general, connectivity between reserves should increase as the distance between them decreases. However, enhancing connectivity may often tradeoff against a network’s ability to representatively sample the system’s natural variability. This “representation” objective is typically measured in terms of species richness or diversity of habitats, but has other important elements (e.g., minimizing the risk that multiple reserves will be impacted by catastrophic events). Such representation objectives tend to be better achieved as reserves become more widely spaced. Thus, optimizing the location, size and spacing of reserves requires both an understanding of larval dispersal and explicit consideration of how well the network represents the broader system; indeed the lack of an integrated theory for optimizing tradeoffs between connectivity and representation objectives has inhibited the incorporation of connectivity into reserve selection algorithms. This article addresses these issues by (1) updating general recommendations for the location, size and spacing of reserves based on emerging data on larval dispersal in corals and reef fishes, and on considerations for maintaining genetic diversity; (2) using a spatial analysis of the Great Barrier Reef Marine Park to examine potential tradeoffs between connectivity and representation of biodiversity and (3) describing a framework for incorporating environmental fluctuations into the conceptualization of the tradeoff between connectivity and representation, and that expresses both in a common, demographically meaningful currency, thus making optimization possible.


Ecology and Society | 2006

Periodic Closures as Adaptive Coral Reef Management in the Indo- Pacific

Josh E. Cinner; Michael J. Marnane; Tim R. McClanahan; Glenn R. Almany

This study explores the social, economic, and ecological context within which communities in Papua New Guinea and Indonesia use adaptive coral reef management. We tested whether periodic closures had positive effects on reef resources, and found that both the biomass and the average size of fishes commonly caught in Indo-Pacific subsistence fisheries were greater inside areas subject to periodic closures compared to sites with year-round open access. Surprisingly, both long-lived and short-lived species benefited from periodic closures. Our study sites were remote communities that shared many socioeconomic characteristics; these may be crucial to the effectiveness of adaptive management of reef resources through periodic closures. Some of these factors include exclusive tenure over marine resources, a body of traditional ecological knowledge that allows for the rapid assessment of resource conditions, social customs that facilitate compliance with closures, relatively small human populations, negligible migration, and a relatively low dependence on fisheries. This dynamic adaptive management system, in which communities manage their resources among multiple social and ecological baselines, contrasts with western fisheries management practices, centered on maintaining exploited populations at stable levels in which net production is maximized.


Ecology | 2003

PRIORITY EFFECTS IN CORAL REEF FISH COMMUNITIES

Glenn R. Almany

Demographically open communities are often viewed as stochastically structured assemblages because most colonizing juveniles arrive via unpredictable dispersal mechanisms. However, interactions between established residents and incoming juveniles may affect juvenile persistence in species-specific ways and could therefore impose a degree of determinism on future community structure. Using 16 spatially isolated communities of coral reef fishes, I conducted two experiments to determine how prior residency by two guilds of fishes affected juvenile recruitment. Each experiment factorially manipulated the presence and absence of two guilds: resident piscivores (groupers and moray eels) and interference competitors (territorial damselfishes). In the first experiment, guilds were manipulated via selective removals, and subsequent recruitment (larval settlement minus mortality) was monitored for 44 days. In the second experiment, guilds were placed within large cages to prevent direct resident–juvenile interactions, while allowing for any cues produced by enclosed fishes, thereby testing whether incoming larvae used resident-derived cues to select or reject settlement sites. Colonizing juveniles were collected from each reef over 42 days to prevent confounding resident- and recruit-derived cues. In the first experiment, piscivores inhibited recruitment of a damselfish (Pomacentridae) and a surgeonfish (Acanthuridae), and enhanced recruitment of a wrasse (Labridae). In contrast, territorial damselfishes inhibited recruitment of the damselfish and the wrasse, and enhanced recruitment of the surgeonfish. Observations of early recruitment patterns suggested that recruitment differences were established rapidly during the night or dawn periods shortly after settlement and before each daily census. In the second experiment, there was no evidence that larvae used resident-derived cues to select settlement sites, suggesting that recruitment differences in the first experiment resulted from differential mortality caused by direct resident–recruit interactions rather than differential larval settlement. These results demonstrate that interactions between established residents and newly arrived juveniles can have a strong influence on juvenile persistence, and that such interactions appear to be strongest within hours of larval settlement. Furthermore, because resident effects were species specific, the present composition of these communities may impose a previously undocumented degree of determinism on their future structure.


Oecologia | 2007

Habitat choice, recruitment and the response of coral reef fishes to coral degradation

David A. Feary; Glenn R. Almany; Mark I. McCormick; Geoffrey P. Jones

The global degradation of coral reefs is having profound effects on the structure and species richness of associated reef fish assemblages. Historically, variation in the composition of fish communities has largely been attributed to factors affecting settlement of reef fish larvae. However, the mechanisms that determine how fish settlers respond to different stages of coral stress and the extent of coral loss on fish settlement are poorly understood. Here, we examined the effects of habitat degradation on fish settlement using a two-stage experimental approach. First, we employed laboratory choice experiments to test how settlers responded to early and terminal stages of coral degradation. We then quantified the settlement response of the whole reef fish assemblage in a field perturbation experiment. The laboratory choice experiments tested how juveniles from nine common Indo-Pacific fishes chose among live colonies, partially degraded colonies, and dead colonies with recent algal growth. Many species did not distinguish between live and partially degraded colonies, suggesting settlement patterns are resilient to the early stages of declining coral health. Several species preferred live or degraded corals, and none preferred to associate with dead, algal-covered colonies. In the field experiment, fish recruitment to coral colonies was monitored before and after the introduction of a coral predator (the crown-of-thorns starfish) and compared with undisturbed control colonies. Starfish reduced live coral cover by 95–100%, causing persistent negative effects on the recruitment of coral-associated fishes. Rapid reductions in new recruit abundance, greater numbers of unoccupied colonies and a shift in the recruit community structure from one dominated by coral-associated fishes before degradation to one predominantly composed of algal-associated fish species were observed. Our results suggest that while resistant to coral stress, coral death alters the process of replenishment of coral reef fish communities.


Biological Reviews | 2015

Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design

Alison Green; Aileen P. Maypa; Glenn R. Almany; Kevin L. Rhodes; Rebecca Weeks; Rene A. Abesamis; Mary Gleason; Peter J. Mumby; Alan T. White

Well‐designed and effectively managed networks of marine reserves can be effective tools for both fisheries management and biodiversity conservation. Connectivity, the demographic linking of local populations through the dispersal of individuals as larvae, juveniles or adults, is a key ecological factor to consider in marine reserve design, since it has important implications for the persistence of metapopulations and their recovery from disturbance. For marine reserves to protect biodiversity and enhance populations of species in fished areas, they must be able to sustain focal species (particularly fishery species) within their boundaries, and be spaced such that they can function as mutually replenishing networks whilst providing recruitment subsidies to fished areas. Thus the configuration (size, spacing and location) of individual reserves within a network should be informed by larval dispersal and movement patterns of the species for which protection is required. In the past, empirical data regarding larval dispersal and movement patterns of adults and juveniles of many tropical marine species have been unavailable or inaccessible to practitioners responsible for marine reserve design. Recent empirical studies using new technologies have also provided fresh insights into movement patterns of many species and redefined our understanding of connectivity among populations through larval dispersal. Our review of movement patterns of 34 families (210 species) of coral reef fishes demonstrates that movement patterns (home ranges, ontogenetic shifts and spawning migrations) vary among and within species, and are influenced by a range of factors (e.g. size, sex, behaviour, density, habitat characteristics, season, tide and time of day). Some species move <0.1–0.5 km (e.g. damselfishes, butterflyfishes and angelfishes), <0.5–3 km (e.g. most parrotfishes, goatfishes and surgeonfishes) or 3–10 km (e.g. large parrotfishes and wrasses), while others move tens to hundreds (e.g. some groupers, emperors, snappers and jacks) or thousands of kilometres (e.g. some sharks and tuna). Larval dispersal distances tend to be <5–15 km, and self‐recruitment is common. Synthesising this information allows us, for the first time, to provide species, specific advice on the size, spacing and location of marine reserves in tropical marine ecosystems to maximise benefits for conservation and fisheries management for a range of taxa. We recommend that: (i) marine reserves should be more than twice the size of the home range of focal species (in all directions), thus marine reserves of various sizes will be required depending on which species require protection, how far they move, and if other effective protection is in place outside reserves; (ii) reserve spacing should be <15 km, with smaller reserves spaced more closely; and (iii) marine reserves should include habitats that are critical to the life history of focal species (e.g. home ranges, nursery grounds, migration corridors and spawning aggregations), and be located to accommodate movement patterns among these. We also provide practical advice for practitioners on how to use this information to design, evaluate and monitor the effectiveness of marine reserve networks within broader ecological, socioeconomic and management contexts.


Ecology and Evolution | 2012

Persistence of self‐recruitment and patterns of larval connectivity in a marine protected area network

Michael L. Berumen; Glenn R. Almany; Serge Planes; Geoffrey P. Jones; Pablo Saenz-Agudelo; Simon R. Thorrold

The use of marine protected area (MPA) networks to sustain fisheries and conserve biodiversity is predicated on two critical yet rarely tested assumptions. Individual MPAs must produce sufficient larvae that settle within that reserves boundaries to maintain local populations while simultaneously supplying larvae to other MPA nodes in the network that might otherwise suffer local extinction. Here, we use genetic parentage analysis to demonstrate that patterns of self-recruitment of two reef fishes (Amphiprion percula and Chaetodon vagabundus) in an MPA in Kimbe Bay, Papua New Guinea, were remarkably consistent over several years. However, dispersal from this reserve to two other nodes in an MPA network varied between species and through time. The stability of our estimates of self-recruitment suggests that even small MPAs may be self-sustaining. However, our results caution against applying optimization strategies to MPA network design without accounting for variable connectivity among species and over time.


Coastal Management | 2014

Designing Marine Reserves for Fisheries Management, Biodiversity Conservation, and Climate Change Adaptation

Alison Green; Leanne Fernandes; Glenn R. Almany; Rene A. Abesamis; Elizabeth Mcleod; Porfirio M. Aliño; Alan T. White; Rod Salm; John Tanzer; Robert L. Pressey

Overfishing and habitat destruction due to local and global threats are undermining fisheries, biodiversity, and the long-term sustainability of tropical marine ecosystems worldwide, including in the Coral Triangle. Well-designed and effectively managed marine reserve networks can reduce local threats, and contribute to achieving multiple objectives regarding fisheries management, biodiversity conservation and adaptation to changes in climate and ocean chemistry. Previous studies provided advice regarding ecological guidelines for designing marine reserves to achieve one or two of these objectives. While there are many similarities in these guidelines, there are key differences that provide conflicting advice. Thus, there is a need to provide integrated guidelines for practitioners who wish to design marine reserves to achieve all three objectives simultaneously. Scientific advances regarding fish connectivity and recovery rates, and climate and ocean change vulnerability, also necessitate refining advice for marine reserve design. Here we review ecological considerations for marine reserve design, and provide guidelines to achieve all three objectives simultaneously regarding: habitat representation; risk spreading; protecting critical, special and unique areas; reserve size, spacing, location, and duration; protecting climate resilient areas; and minimizing and avoiding threats. In addition to applying ecological guidelines, reserves must be designed to address social and governance considerations, and be integrated within broader fisheries and coastal management regimes.


Ecology | 2011

Contrasting effects of habitat loss and fragmentation on coral‐associated reef fishes

Mary C. Bonin; Glenn R. Almany; Geoffrey P. Jones

Disturbance can result in the fragmentation and/or loss of suitable habitat, both of which can have important consequences for survival, species interactions, and resulting patterns of local diversity. However, effects of habitat loss and fragmentation are typically confounded during disturbance events, and previous attempts to determine their relative significance have proved ineffective. Here we experimentally manipulated live coral habitats to examine the potential independent and interactive effects of habitat loss and fragmentation on survival, abundance, and species richness of recruitment-stage, coral-associated reef fishes. Loss of 75% of live coral from experimental reefs resulted in low survival of a coral-associated damselfish and low abundance and richness of other recruits 16 weeks after habitat manipulations. In contrast, fragmentation had positive effects on damselfish survival and resulted in greater abundance and species richness of other recruits. We hypothesize that spacing of habitat through fragmentation weakens competition within and among species. Comparison of effect sizes over the course of the study period revealed that, in the first six weeks following habitat manipulations, the positive effects of fragmentation were at least four times stronger than the effects of habitat loss. This initial positive effect of fragmentation attenuated considerably after 16 weeks, whereas the negative effects of habitat loss increased in strength over time. There was little indication that the amount of habitat influenced the magnitude of the habitat fragmentation effect. Numerous studies have reported dramatic declines in coral reef fish abundance and diversity in response to disturbances that cause the loss and fragmentation of coral habitats. Our results suggest that these declines occur as a result of habitat loss, not habitat fragmentation. Positive fragmentation effects may actually buffer against the negative effects of habitat loss and contribute to the resistance of reef fish populations to declines in coral cover.

Collaboration


Dive into the Glenn R. Almany's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael L. Berumen

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Serge Planes

PSL Research University

View shared research outputs
Top Co-Authors

Avatar

Simon R. Thorrold

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin L. Rhodes

University of Hawaii at Hilo

View shared research outputs
Researchain Logo
Decentralizing Knowledge