Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glenn R. Sharman is active.

Publication


Featured researches published by Glenn R. Sharman.


Geological Society of America Bulletin | 2015

Detrital zircon provenance of the Late Cretaceous–Eocene California forearc: Influence of Laramide low-angle subduction on sediment dispersal and paleogeography

Glenn R. Sharman; Stephan A. Graham; Marty Grove; David L. Kimbrough; James E. Wright

Upper Cretaceous–Eocene forearc strata deposited along the California continental margin record a complex history of plate convergence that shaped the tectonic development of the U.S. Cordillera. Synthesis of new and published detrital zircon U-Pb ages over a 2000 km length of the southern Oregon–California–northern Baja forearc clearly demonstrates spatial and temporal changes in sandstone provenance that reflect evolving sediment dispersal patterns associated with the extinction of continental margin arc magmatism and transfer of deformation to the continental interior during latest Cretaceous–early Cenozoic Laramide low-angle subduction. Measured age distributions from Cenomanian to Campanian forearc strata indicate the existence of a drainage divide formed by a high-standing mid-Cretaceous Cordilleran arc that crosscut older, Late Permian–Jurassic arc segments. Progressive influx of 125–85 Ma detrital zircon in the Great Valley forearc reflects ongoing denudation of the Sierra Nevada batholith throughout Late Cretaceous–early Paleogene time. In contrast, age distributions in the Peninsular Ranges forearc indicate early denudation of the Peninsular Ranges batholith that is hypothesized to have resulted from the initial collision of an oceanic plateau with the southern California margin; as a result, these age distributions exhibit little change over time until delivery of extraregional detritus to the margin in Eocene time. Maastrichtian through middle Eocene strata preserved south of the Sierra Nevada record a pronounced shift from local to extraregional provenance caused by the development of drainages that extended across the breached mid-Cretaceous continental margin batholith to tap the continental interior. This geomorphic breaching of the mid-Cretaceous arc, and associated inland drainage migration, represents the culminating influence of Laramide low-angle subduction on the continental margin and likely occurred following subduction of the Shatsky conjugate plateau beneath the western United States.


Geology | 2013

A reappraisal of the early slip history of the San Andreas fault, central California, USA

Glenn R. Sharman; Stephan A. Graham; Marty Grove; Jeremy K. Hourigan

The modern San Andreas fault system (California, United States) is widely considered to have formed in response to the initiation of Pacific–North American plate interaction ca. 27 Ma. Although there is general consensus on the magnitude and timing of Neogene displacement along the San Andreas system, its Paleogene history remains unresolved. In particular, ∼100 km of right-lateral offset between mid-Cretaceous plutonic rocks of the northern Salinian block and the western edge of Sierra Nevada basement remains unaccounted for after restoration of Neogene displacement along strike-slip faults of the San Andreas system. Our detrital zircon data invalidate a key Paleogene piercing point by demonstrating that displaced portions of the hypothesized Middle Eocene Butano–Point of Rocks submarine fan were never contiguous across the San Andreas fault. We instead show that the Eocene provenance characteristics exhibited by northern Salinian strata closely match those of the southern Sierra Nevada and northwestern Mojave Desert. This implies that the northern Salinian block was located at least 75–50 km farther south in Eocene time than previously recognized. Our data require (1) pre–23 Ma dextral slip along the San Andreas fault in central California, and/or (2) slip along a predecessor fault that formed prior to Pacific–North American plate interaction. This previously undocumented slip may indicate that significant Pacific–North American plate interaction propagated from the plate margin into the continental interior much earlier than conventionally believed. Alternatively, late Paleogene slip could predate the development of the modern plate boundary and represent inboard dextral strike-slip displacement along the eastern margin of the Salinian block, similar to the deformation that occurs today along the strike-slip Sumatra fault system.


Geology | 2017

Early Cenozoic drainage reorganization of the United States Western Interior–Gulf of Mexico sediment routing system

Glenn R. Sharman; Jacob A. Covault; Daniel F. Stockli; Anton Wroblewski; Meredith A. Bush

Continental-scale drainages host the world’s largest rivers and offshore sediment accumulations, many of which contain significant petroleum reserves. Rate of sediment supply in these settings may be a signal of external controls (e.g., tectonics) on landscape evolution, yet deciphering these controls remains a major challenge in interpreting the ancient stratigraphic record. Integration of new and published detrital zircon U-Pb ages from the United States Rocky Mountain region and Gulf of Mexico (GOM) sedimentary basin demonstrates profound changes in the U.S. continental drainage divide that controlled the rate of sediment delivery to the northern GOM during Paleocene–Eocene time. Sedimentation rate increased dramatically during deposition of the lower Wilcox Group, reaching approximately three times the Cenozoic average, accompanied by pronounced shoreline regression and delivery of a large volume of sand to the basin floor. We hypothesize that this increase in sediment delivery to the GOM resulted from drainage capture of a significant portion of the Sevier-Laramide structural province (∼900,000 km2) that included the headwaters of the California and Idaho Rivers. Capture of the California River drainage may have occurred in the vicinity of the Hanna Basin of eastern Wyoming that previously emptied northward into a shallow seaway, but was subsequently diverted southward to the Rockdale delta, which accumulated within the Houston embayment during the time of deposition of the lower Wilcox Group. Detrital zircon U-Pb ages from Wilcox samples within the Rockdale delta show a remarkable similarity with contemporaneous Laramide synorogenic units, including enrichment in detritus derived from the Cordilleran arc and basement terranes of western North America relative to older and younger units in the Houston embayment. A subsequent order of magnitude decline in sedimentation rate to the GOM can be partly attributed to well-documented drainage closure (∼800,000 km2) that accompanied lake formation in interior Laramide basins (ca. 53–51.8 Ma). Our results demonstrate that tectonically induced drainage migration in the high-relief segments of continental-scale drainages can have a pronounced effect on the rate of sediment transfer to continental margins.


Geosphere | 2015

Spatial patterns of deformation and paleoslope estimation within the marginal and central portions of a basin-floor mass-transport deposit, Taranaki Basin, New Zealand

Glenn R. Sharman; Stephan A. Graham; Larisa U. Masalimova; Lauren E. Shumaker; Peter R. King

This study describes the character of submarine mass movement and associated deformation as revealed by an exceptionally well-exposed portion of a seismic-scale mass-transport deposit (MTD) within the upper Miocene Mohakatino Formation (Taranaki Basin, New Zealand). The North Awakino MTD is at least 55 m thick and crops out along the northern Taranaki coastline for ∼11 km in wave-cut platforms and in cliffs as much as 100 m high. Spectacular soft-sediment deformation features are developed in remobilized sediment gravity flow deposits that initially accumulated within a low-gradient intraslope basin. Sedimentary facies within the North Awakino MTD comprise laterally extensive, thick- to thin-bedded volcaniclastic sandstone and mudstone. Distinct postdepositional deformation styles are associated with bedding type: folds developed in thick-bedded sandstone are larger (fold heights to tens of meters) and more laterally continuous (to 1 km) than those developed in thinner bedded facies. Regional geologic relationships suggest that nearly the full width of the North Awakino MTD is exposed in outcrop, providing a rare opportunity to observe lateral relationships between the marginal and central portions of the MTD. We conducted a rigorous paleoslope analysis of slump fold, fault, and bedding orientations using both existing and newly proposed methodologies. Separate analysis of seven subregions within the North Awakino MTD reveals that the predicted MTD transport direction varies widely along the outcrop extent. Most notably, slump folds and faults within the inferred margins have mean orientations that are suborthogonal to those within the central portions of the MTD. This relationship is hypothesized to be a consequence of edge effects that may be related to lateral compression along the margins of the MTD. Our analysis demonstrates the importance of accounting for spatial heterogeneity in slump structure orientations when determining the paleoslope orientation through kinematic analysis. Our inference of west-directed translation suggests that the North Awakino MTD formed in response to a local change in the bathymetric slope orientation that was likely the result of tectonically induced basin deformation.


Geological Society of America Bulletin | 2017

Stratigraphic and provenance variations in the early evolution of the Magallanes-Austral foreland basin: Implications for the role of longitudinal versus transverse sediment dispersal during arc-continent collision

Matthew A. Malkowski; Theresa M. Schwartz; Glenn R. Sharman; Zachary T. Sickmann; Stephan A. Graham

Resolving the role of longitudinal versus transverse sediment dispersal in ancient sedimentary basins is paramount for understanding filling history and the timing of source area exhumation. The southern Patagonian Andes provide a unique opportunity for constraining these relationships because Upper Cretaceous shallow- and deep-marine strata that record the longitudinal filling history of the Magallanes-Austral foreland basin are exposed along a 500+ km outcrop belt. New stratigraphic, sedimentologic, and facies analyses of the Cenomanian-aged Lago Viedma Formation indicate a protracted phase of a dominantly shoreface and foreshore depositional setting at the northern end of the basin (Austral basin sector), whereas 200 km to the south, age-equivalent strata of the Punta Barrosa Formation are characterized by southward-flowing deep-water fan systems. New sandstone compositional data from both formations are rich in intermediate volcanic grains and suggest an undissected to transitional volcanic arc source. However, detrital zircon populations from the shallow-marine Lago Viedma Formation are dominated by arc sources (126−75 Ma), whereas deep-water strata of the Punta Barrosa Formation contain much greater abundances of Jurassic (199−161 Ma) and pre-Jurassic (>200 Ma) ages. This indicates that deep-water fan systems were not linked to a shelfal sediment dispersal system by a simple northward point-source model, despite consistent southward-directed paleocurrents in deep-water strata. Time-transgressive provenance variations continue southward (along strike), where lithostratigraphic equivalents in the Ultima Esperanza and Fuegian sectors of the basin contain a mix of arc and pre-Jurassic metamorphic basement sources and a paucity of Jurassic ages. We interpret these along-strike provenance variations to be the result of significant local sediment contributions from transverse sources. The influence of transverse tributaries during the early history of the Magallanes-Austral foreland basin suggests that the diachronous onset of coarse clastic deposition in the basin was likely due to the progressive delivery (and initiation) of more locally derived coarse clastic sediment. We attribute this to southward-progressing thrust-belt development associated with progressive north to south collision (or suturing) of the parautochthonous Patagonian arc with attenuated continental crust of South America.


AAPG Bulletin | 2018

Quantifying sediment supply to continental margins: Application to the Paleogene Wilcox Group, Gulf of Mexico

Jinyu Zhang; Jacob A. Covault; Michael J. Pyrcz; Glenn R. Sharman; Cristian Carvajal; Kristy Milliken

Sediment supply to the ocean influences basin-margin growth and reflects upstream landscape evolution, including patterns of sediment routing, denudation, and tectono-climatic perturbations in source areas. Constraining sediment supply is useful for inputs to stratigraphic forward models and for predictions of reservoir presence and quality. Because of the importance of sediment supply, geoscientists have developed various methods to estimate it. Here, we apply Monte Carlo simulation (MCS) to the BQART model that is used to describe an empirical relationship between river catchment paleogeography, climate, and sediment load. We calculate a range of sediment supply from North American source areas to the Gulf of Mexico that suggests an overall decrease in median sediment supply from the late Paleocene to the early Eocene from 404–514 to 144–204 million tons per year, depending on the published paleogeographic model that we used to guide our selection of input variables. Comparison of these estimates with downstream sediment records shows that the subsurface depositional rates are within the 10th–90th percentile range of this BQART-MCS uncertainty model. The 50th percentile values of BQART-MCS results are overall larger than the published Wilcox sediment volume, which indicates that the size of Wilcox deep-water fans might be underestimated. We use source-of-change analysis to show the influence of each river-catchment input of the BQART model on change in sediment supply from the late Paleocene to the early Eocene. Integration of empirical-based methods, such as BQART, with physics-based experimental and modeling approaches might provide better constrains on sediment supply and deposition in frontier areas of oil and gas exploration.


The Depositional Record | 2018

detritalPy: A Python-based toolset for visualizing and analysing detrital geo-thermochronologic data

Glenn R. Sharman; Jonathan P. Sharman; Zoltan Sylvester

Detrital geochronology and thermochronology have emerged as primary methods of reconstructing the tectonic and surficial evolution of the Earth over geological time. Technological improvements in the acquisition of detrital geo‐thermochronologic data have resulted in a rapid increase in the quantity of published data over the past two decades, particularly for the mineral zircon. However, existing tools for visualizing and analysing detrital geo‐thermochronologic data generally lack flexibility for working with large datasets, hampering efforts to utilize the large quantity of available data.


Geosphere | 2018

Subduction zones and their hydrocarbon systems

Angela M. Hessler; Glenn R. Sharman

Subduction zones are common tectonic features central to large-scale crustal and elemental cycling, and they are accompanied by basins often with thick sedimentary fill and structures suitable for hydrocarbon preservation. However, significant hydrocarbon production occurs in only a handful of subduction zone locations. Here we explore our current understanding of the controls on hydrocarbon systems associated with subduction zones, in terms of the strongly variable conditions inherent to this tectonic setting that either favor or limit petroleum production, and in the context of three case studies (Cook Inlet and Sacramento basins, USA; Talara basin, Peru). This review concentrates on continental rather than intra-oceanic subduction settings due to limited basin preservation and hydrocarbon prospectivity in the latter. Overall, the primary limitations on hydrocarbon potential in forearc and/or trenchslope basins are time-to-maturation (low geothermal gradients), reservoir quality, source-rock presence and quality, structural complexity, and depth to reservoir. The latter two conditions may explain why offshore exploration has been limited near subduction zones, even where onshore production is robust and/or hydrocarbon seeps are common. Prospectivity may increase with enhanced seismic imaging and offshore infrastructure in some locations, and with the economic development of unconventional resources such as gas hydrates in accretionary prisms or deep shale gas in forearc basins. In any case, the presence of hydrocarbon systems in subduction zones, whether prospective or not, is an important part of the cycling of carbon and other elements at active convergent margins.


Earth and Planetary Science Letters | 2017

Sediment unmixing using detrital geochronology

Glenn R. Sharman; Samuel A. Johnstone


Marine and Petroleum Geology | 2016

Outcrop characterization of a submarine channel-lobe complex: The Lower Mount Messenger Formation, Taranaki Basin, New Zealand

Larisa U. Masalimova; Donald R. Lowe; Glenn R. Sharman; Peter R. King; Malcolm J. Arnot

Collaboration


Dive into the Glenn R. Sharman's collaboration.

Top Co-Authors

Avatar

Jacob A. Covault

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel F. Stockli

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge