Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gloria Burow is active.

Publication


Featured researches published by Gloria Burow.


BMC Plant Biology | 2008

Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population

Zhanguo Xin; Ming Li Wang; Noelle A. Barkley; Gloria Burow; Cleve D. Franks; Gary A. Pederson; John J. Burke

BackgroundSorghum [Sorghum bicolor (L.) Moench] is ranked as the fifth most important grain crop and serves as a major food staple and fodder resource for much of the world, especially in arid and semi-arid regions. The recent surge in sorghum research is driven by its tolerance to drought/heat stresses and its strong potential as a bioenergy feedstock. Completion of the sorghum genome sequence has opened new avenues for sorghum functional genomics. However, the availability of genetic resources, specifically mutant lines, is limited. Chemical mutagenesis of sorghum germplasm, followed by screening for mutants altered in important agronomic traits, represents a rapid and effective means of addressing this limitation. Induced mutations in novel genes of interest can be efficiently assessed using the technique known as Targeting Induced Local Lesion IN Genomes (TILLING).ResultsA sorghum mutant population consisting of 1,600 lines was generated from the inbred line BTx623 by treatment with the chemical agent ethyl methanesulfonate (EMS). Numerous phenotypes with altered morphological and agronomic traits were observed from M2 and M3 lines in the field. A subset of 768 mutant lines was analyzed by TILLING using four target genes. A total of five mutations were identified resulting in a calculated mutation density of 1/526 kb. Two of the mutations identified by TILLING and verified by sequencing were detected in the gene encoding caffeic acid O-methyltransferase (COMT) in two independent mutant lines. The two mutant lines segregated for the expected brown midrib (bmr) phenotype, a trait associated with altered lignin content and increased digestibility.ConclusionTILLING as a reverse genetic approach has been successfully applied to sorghum. The diversity of the mutant phenotypes observed in the field, and the density of induced mutations calculated from TILLING indicate that this mutant population represents a useful resource for members of the sorghum research community. Moreover, TILLING has been demonstrated to be applicable for sorghum functional genomics by evaluating a small subset of the EMS-induced mutant lines.


Bioenergy Research | 2009

An Induced Sorghum Mutant Population Suitable for Bioenergy Research

Zhanguo Xin; Ming Li Wang; Gloria Burow; John J. Burke

The sorghum [Sorghum bicolor (L.) Moench] inbred line BTx623 has served as a parent for development of several mapping populations, also providing a source for the generation of DNA libraries for physical mapping, and as the inbred line selected for sorghum genome sequencing. Since genetic mapping, physical mapping and genome sequencing are all based on the same inbred line, these genetic resources have made the genome study of sorghum very efficient. However, in comparison with other model species, there is one important genetic resource still missing in the sorghum research community, a mutant population. A systematically annotated mutant population will facilitate many avenues of research, especially those focusing on functional genomics and bioenergy research. Here we report the generation of a sorghum mutant population derived from the inbred line BTx623 by treatment with the chemical agent ethyl methanesulfonate (EMS). The mutant population consists of 1,600 pedigreed M3 families; each of them was derived from an independent M1 seed. Many lines displayed traits such as brown midrib (bmr), erect leaves (erl), multiple tillers (mtl), and late flowering (lfl), characteristics useful for bioenergy research. Results from our phenotyping and genotyping studies indicate that this mutant population will be a valuable and useful genetic resource for both sorghum functional genomics and bioenergy research.


PLOS ONE | 2014

Comparisons of De Novo Transcriptome Assemblers in Diploid and Polyploid Species Using Peanut (Arachis spp.) RNA-Seq Data

Ratan Chopra; Gloria Burow; Andrew D. Farmer; Joann Mudge; Charles E. Simpson; Mark D. Burow

The narrow genetic base and limited genetic information on Arachis species have hindered the process of marker-assisted selection of peanut cultivars. However, recent developments in sequencing technologies have expanded opportunities to exploit genetic resources, and at lower cost. To use the genetic information for Arachis species available at the transcriptome level, it is important to have a good quality reference transcriptome. The available Tifrunner 454 FLEX transcriptome sequences have an assembly with 37,000 contigs and low N50 values of 500-751bp. Therefore, we generated de novo transcriptome assemblies, with about 38 million reads in the tetraploid cultivar OLin, and 16 million reads in each of the diploids, A. duranensis K38901 and A. ipaënsis KGBSPSc30076 using three different de novo assemblers, Trinity, SOAPdenovo-Trans and TransAByss. All these assemblers can use single kmer analysis, and the latter two also permit multiple kmer analysis. Assemblies generated for all three samples had N50 values ranging from 1278–1641 bp in Arachis hypogaea (AABB), 1401–1492 bp in Arachis duranensis (AA), and 1107–1342 bp in Arachis ipaënsis (BB). Comparison with legume ESTs and protein databases suggests that assemblies generated had more than 40% full length transcripts with good continuity. Also, on mapping the raw reads to each of the assemblies generated, Trinity had a high success rate in assembling sequences compared to both TransAByss and SOAPdenovo-Trans. De novo assembly of OLin had a greater number of contigs (67,098) and longer contig length (N50 = 1,641) compared to the Tifrunner TSA. Despite having shorter read length (2×50) than the Tifrunner 454FLEX TSA, de novo assembly of OLin proved superior in comparison. Assemblies generated to represent different genome combinations may serve as a valuable resource for the peanut research community.


Peanut Science | 2008

Identification of Peanut Hybrids Using Microsatellite Markers and Horizontal Polyacrylamide Gel Electrophoresis

S. M. Gomez; N. N. Denwar; T. Ramasubramanian; Charles E. Simpson; Gloria Burow; John J. Burke; Naveen Puppala; Mark D. Burow

In peanut hybridization, distinguishing inadvertent selfs from the true hybrids may be difficult. In this study, to differentiate between selfs and hybrids, DNA was extracted from leaf tissue of F1 or F2 plants, and SSR markers were amplified and bands separated by a novel submarine horizontal polyacrylamide gel electrophoresis (H-PAGE). By comparing the resulting banding patterns to those of the parents, 70% of the putative hybrids were shown to be true hybrids on the basis of possessing a marker allele from the male parent. The H-PAGE gels gave better band separation and differentiation of selfed progenies than agarose gels, and were compatible with the common horizontal agarose gel units. This method provides a quick assay to distinguish hybrids from inadvertent selfs, and should result in greater efficiency and more effective use of resources in peanut breeding programs.


G3: Genes, Genomes, Genetics | 2013

Genetic Analysis of Recombinant Inbred Lines for Sorghum bicolor × Sorghum propinquum

Wenqian Kong; Huizhe Jin; Cleve D. Franks; Changsoo Kim; Rajib Bandopadhyay; Mukesh Kumar Rana; Susan Auckland; Valorie H. Goff; Lisa K. Rainville; Gloria Burow; Charles Woodfin; John J. Burke; Andrew H. Paterson

We describe a recombinant inbred line (RIL) population of 161 F5 genotypes for the widest euploid cross that can be made to cultivated sorghum (Sorghum bicolor) using conventional techniques, S. bicolor × Sorghum propinquum, that segregates for many traits related to plant architecture, growth and development, reproduction, and life history. The genetic map of the S. bicolor × S. propinquum RILs contains 141 loci on 10 linkage groups collectively spanning 773.1 cM. Although the genetic map has DNA marker density well-suited to quantitative trait loci mapping and samples most of the genome, our previous observations that sorghum pericentromeric heterochromatin is recalcitrant to recombination is highlighted by the finding that the vast majority of recombination in sorghum is concentrated in small regions of euchromatin that are distal to most chromosomes. The advancement of the RIL population in an environment to which the S. bicolor parent was well adapted (indeed bred for) but the S. propinquum parent was not largely eliminated an allele for short-day flowering that confounded many other traits, for example, permitting us to map new quantitative trait loci for flowering that previously eluded detection. Additional recombination that has accrued in the development of this RIL population also may have improved resolution of apices of heterozygote excess, accounting for their greater abundance in the F5 than the F2 generation. The S. bicolor × S. propinquum RIL population offers advantages over early-generation populations that will shed new light on genetic, environmental, and physiological/biochemical factors that regulate plant growth and development.


The Plant Genome | 2015

Natural variation in synthesis and catabolism genes influences dhurrin content in sorghum

Chad Hayes; Gloria Burow; Patrick J. Brown; Carrie Thurber; Zhanguo Xin; John J. Burke

Cyanogenic glucosides are natural compounds found in more than 1000 species of angiosperms that produce HCN and are deemed undesirable for agricultural use. However, these compounds are important components of the primary defensive mechanisms of many plant species. One of the best‐studied cyanogenic glucosides is dhurrin [(S)‐p‐hydroxymandelonitrile‐β‐D‐glucopyranoside], which is produced primarily in sorghum [Sorghum bicolor (L.) Moench]. The biochemical basis for dhurrin metabolism is well established; however, little information is available on its genetic control. Here, we dissect the genetic control of leaf dhurrin content through a genome‐wide association study (GWAS) using a panel of 700 diverse converted sorghum lines (conversion panel) previously subjected to pre‐breeding and selected for short stature (∼1 m in height) and photoperiod insensitivity. The conversion panel was grown for 2 yr in three environments. Wide variation for leaf dhurrin content was found in the sorghum conversion panel, with the Caudatum group exhibiting the highest dhurrin content and the Guinea group showing the lowest dhurrin content. A GWAS using a mixed linear model revealed significant associations (a false discovery rate [FDR] < 0.05) close to both UGT 185B1 in the canonical biosynthetic gene cluster on chromosome 1 and close to the catabolic dhurrinase loci on chromosome 8. Dhurrin content was associated consistently with biosynthetic genes in the two N‐fertilized environments, while dhurrin content was associated with catabolic loci in the environment without supplemental N. These results suggest that genes for both biosynthesis and catabolism are important in determining natural variation for leaf dhurrin in sorghum in different environments.


BMC Plant Biology | 2017

Genome-wide association analysis of seedling traits in diverse Sorghum germplasm under thermal stress

Ratan Chopra; Gloria Burow; John J. Burke; Nicholas Gladman; Zhanguo Xin

BackgroundClimate variability due to fluctuation in temperature is a worldwide concern that imperils crop production. The need to understand how the germplasm variation in major crops can be utilized to aid in discovering and developing breeding lines that can withstand and adapt to temperature fluctuations is more necessary than ever. Here, we analyzed the genetic variation associated with responses to thermal stresses in a sorghum association panel (SAP) representing major races and working groups to identify single nucleotide polymorphisms (SNPs) that are associated with resilience to temperature stress in a major cereal crop.ResultsThe SAP exhibited extensive variation for seedling traits under cold and heat stress. Genome-wide analyses identified 30 SNPs that were strongly associated with traits measured at seedling stage under cold stress and tagged genes that act as regulators of anthocyanin expression and soluble carbohydrate metabolism. Meanwhile, 12 SNPs were significantly associated with seedling traits under heat stress and these SNPs tagged genes that function in sugar metabolism, and ion transport pathways. Evaluation of co-expression networks for genes near the significantly associated SNPs indicated complex gene interactions for cold and heat stresses in sorghum. We focused and validated the expression of four genes in the network of Sb06g025040, a basic-helix-loop-helix (bHLH) transcription factor that was proposed to be involved in purple color pigmentation of leaf, and observed that genes in this network were upregulated during cold stress in a moderately tolerant line as compared to the more sensitive line.ConclusionThis study facilitated the tagging of genome regions associated with variation in seedling traits of sorghum under cold and heat stress. These findings show the potential of genotype information for development of temperature resilient sorghum cultivars and further characterization of genes and their networks responsible for adaptation to thermal stresses. Knowledge on the gene networks from this research can be extended to the other cereal crops to better understand the genetic basis of resilience to temperature fluctuations during plant developmental stages.


The Plant Genome | 2017

Genome-Wide Association Study of Developing Leaves’ Heat Tolerance during Vegetative Growth Stages in a Sorghum Association Panel

Junping Chen; Ratan Chopra; Chad Hayes; Geoffrey P. Morris; Sandeep Marla; John J. Burke; Zhanguo Xin; Gloria Burow

Sorghum could serve as a vital resource of heat tolerance DNA markers. Natural variation of leaf traits provides understanding of heat tolerance in sorghum. GWAS reveals 14 SNPs with two heat stress responsive traits in sorghum leaves.


Plant Growth Regulation | 2013

Developmental and genetic characterization of a short leaf mutant of sorghum (Sorghum bicolor L. (Moench.))

Gloria Burow; C. D. Franks; Zhanguo Xin; John J. Burke

Changes in plant architecture, specifically conversion to compact canopy for cereal crops, have resulted in significant increases in grain yield for wheat (Triticum aestivum) and rice (Oryza sativa). For sorghum (Sorghum bicolor L. Moench.) a versatile crop with an open canopy, plant architecture is an important feature that merits strong consideration for modification. Here, we report the genetic, developmental, and physiological characterization of a sorghum genetic stock, KFS2061, a stable mutant (in the Western Black Hull Kafir background) which exhibit short and erect leaves resulting in compact plant architecture. Genetic study of an F2 population derived from the cross of KFS2061 to BTx623 showed that the short leaf is recessive and appeared to be controlled by a single gene. The expression of the short leaf trait commenced with the 3rd leaf and is propagated through the entire leaf hierarchy of the canopy. The short leaf mutant exhibited consistent steep leaf angle, 43° (with the main culm as reference), and greener leaves than wild type. Biochemical analyses indicated significantly higher chlorophyll and cellulose content per leaf area in the mutant than wild type. Histological studies revealed reduction in cell length along the longitudinal axis and enlargement of bulliform cells in the adaxial surface of the mutant leaf. Further evaluation of agronomic traits indicated that this mutation could increase harvest index. This study provides information on a short leaf genetic stock that could serve as a vital resource in understanding how to manipulate plant canopy architecture of sorghum.


Frontiers in Plant Science | 2018

Efficient Identification of Causal Mutations through Sequencing of Bulked F2 from Two Allelic Bloomless Mutants of Sorghum bicolor

Yinping Jiao; Gloria Burow; Nicholas Gladman; Veronica Acosta-Martinez; Junping Chen; John J. Burke; Doreen Ware; Zhanguo Xin

Sorghum (Sorghum bicolor Moench, L.) plant accumulates copious layers of epi-cuticular wax (EW) on its aerial surfaces, to a greater extent than most other crops. EW provides a vapor barrier that reduces water loss, and is therefore considered to be a major determinant of sorghums drought tolerance. However, little is known about the genes responsible for wax accumulation in sorghum. We isolated two allelic mutants, bloomless40-1 (bm40-1) and bm40-2, from a mutant library constructed from ethyl methane sulfonate (EMS) treated seeds of an inbred, BTx623. Both mutants were nearly devoid of the EW layer. Each bm mutant was crossed to the un-mutated BTx623 to generated F2 populations that segregated for the bm phenotype. Genomic DNA from 20 bm F2 plants from each population was bulked for whole genome sequencing. A single gene, Sobic.001G228100, encoding a GDSL-like lipase/acylhydrolase, had unique homozygous mutations in each bulked F2 population. Mutant bm40-1 harbored a missense mutation in the gene, whereas bm40-2 had a splice donor site mutation. Our findings thus provide strong evidence that mutation in this GDSL-like lipase gene causes the bm phenotype, and further demonstrate that this approach of sequencing two independent allelic mutant populations is an efficient method for identifying causal mutations. Combined with allelic mutants, MutMap provides powerful method to identify all causal genes for the large collection of bm mutants in sorghum, which will provide insight into how sorghum plants accumulate such abundant EW on their aerial surface. This knowledge may facilitate the development of tools for engineering drought-tolerant crops with reduced water loss.

Collaboration


Dive into the Gloria Burow's collaboration.

Top Co-Authors

Avatar

John J. Burke

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Zhanguo Xin

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Chad Hayes

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Junping Chen

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Ratan Chopra

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Cleve D. Franks

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Yves Emendack

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Gary A. Pederson

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas Gladman

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge