Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary A. Pederson is active.

Publication


Featured researches published by Gary A. Pederson.


BMC Plant Biology | 2008

Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population

Zhanguo Xin; Ming Li Wang; Noelle A. Barkley; Gloria Burow; Cleve D. Franks; Gary A. Pederson; John J. Burke

BackgroundSorghum [Sorghum bicolor (L.) Moench] is ranked as the fifth most important grain crop and serves as a major food staple and fodder resource for much of the world, especially in arid and semi-arid regions. The recent surge in sorghum research is driven by its tolerance to drought/heat stresses and its strong potential as a bioenergy feedstock. Completion of the sorghum genome sequence has opened new avenues for sorghum functional genomics. However, the availability of genetic resources, specifically mutant lines, is limited. Chemical mutagenesis of sorghum germplasm, followed by screening for mutants altered in important agronomic traits, represents a rapid and effective means of addressing this limitation. Induced mutations in novel genes of interest can be efficiently assessed using the technique known as Targeting Induced Local Lesion IN Genomes (TILLING).ResultsA sorghum mutant population consisting of 1,600 lines was generated from the inbred line BTx623 by treatment with the chemical agent ethyl methanesulfonate (EMS). Numerous phenotypes with altered morphological and agronomic traits were observed from M2 and M3 lines in the field. A subset of 768 mutant lines was analyzed by TILLING using four target genes. A total of five mutations were identified resulting in a calculated mutation density of 1/526 kb. Two of the mutations identified by TILLING and verified by sequencing were detected in the gene encoding caffeic acid O-methyltransferase (COMT) in two independent mutant lines. The two mutant lines segregated for the expected brown midrib (bmr) phenotype, a trait associated with altered lignin content and increased digestibility.ConclusionTILLING as a reverse genetic approach has been successfully applied to sorghum. The diversity of the mutant phenotypes observed in the field, and the density of induced mutations calculated from TILLING indicate that this mutant population represents a useful resource for members of the sorghum research community. Moreover, TILLING has been demonstrated to be applicable for sorghum functional genomics by evaluating a small subset of the EMS-induced mutant lines.


Theoretical and Applied Genetics | 2009

Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection

Ming L. Wang; Chengsong Zhu; Noelle A. Barkley; Zhenbang Chen; John E. Erpelding; Seth C. Murray; Mitchell R. Tuinstra; Tesfaye T. Tesso; Gary A. Pederson; Jianming Yu

Sweet sorghum has the potential to become a versatile feedstock for large-scale bioenergy production given its sugar from stem juice, cellulose/hemicellulose from stalks, and starch from grain. However, for researchers to maximize its feedstock potential a first step includes additional evaluations of the 2,180 accessions with varied origins in the US historic sweet sorghum collection. To assess genetic diversity of this collection for bioenergy breeding and population structure for association mapping, we selected 96 accessions and genotyped them with 95 simple sequence repeat markers. Subsequent genetic diversity and population structure analysis methods identified four subpopulations in this panel, which correlated well with the geographic locations where these accessions originated or were collected. Model comparisons for three quantitative traits revealed different levels of population structure effects on flowering time, plant height, and brix. Our results suggest that diverse germplasm accessions curated from different geographical regions should be considered for plant breeding programs to develop sweet sorghum cultivars or hybrids, and that this sweet sorghum panel can be further explored for association mapping.


Theoretical and Applied Genetics | 2011

Population structure and marker–trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection

Ming Li Wang; Sivakumar Sukumaran; Noelle A. Barkley; Zhenbang Chen; Charles Y. Chen; Baozhu Guo; Roy N. Pittman; H. Thomas Stalker; C. Corley Holbrook; Gary A. Pederson; Jianming Yu

Peanut (Arachis hypogaea L.) is one of the most important oilseed and nutritional crops in the world. To efficiently utilize the germplasm collection, a peanut mini-core containing 112 accessions was established in the United States. To determine the population structure and its impact on marker–trait association, this mini-core collection was assessed by genotyping 94 accessions with 81 SSR markers and two functional SNP markers from fatty acid desaturase 2 (FAD2). Seed quality traits (including oil content, fatty acid composition, flavonoids, and resveratrol) were obtained through nuclear magnetic resonance (NMR), gas chromatography (GC), and high-performance liquid chromatography (HPLC) analysis. Genetic diversity and population structure analysis identified four major subpopulations that are related to four botanical varieties. Model comparison with different levels of population structure and kinship control was conducted for each trait and association analyses with the selected models verified that the functional SNP from the FAD2A gene is significantly associated with oleic acid (C18:1), linoleic acid (C18:2), and oleic-to-linoleic (O/L) ratio across this diverse collection. Even though the allele distribution of FAD2A was structured among the four subpopulations, the effect of FAD2A gene remained significant after controlling population structure and had a likelihood-ratio-based R2 (RLR2) value of 0.05 (oleic acid), 0.09 (linoleic acid), and 0.07 (O/L ratio) because the FAD2A alleles were not completely fixed within subpopulations. Our genetic analysis demonstrated that this peanut mini-core panel is suitable for association mapping. Phenotypic characterization for seed quality traits and association testing of the functional SNP from FAD2A gene provided information for further breeding and genetic research.


Plant Genetic Resources | 2005

Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation

Ming Li Wang; Noelle A. Barkley; Ju-Kyung Yu; Rob E. Dean; M. L. Newman; Mark E. Sorrells; Gary A. Pederson

A major challenge for the molecular characterization and evaluation of minor grass species germplasm is the lack of sufficient DNA markers. A set of 210 simple sequence repeat (SSR) markers developed from major cereal crops (self-pollinated wheat and rice, mainly self-pollinated sorghum and out-crossing maize) were evaluated for their transferability to minor grass species (finger millet, Eleusine coracana ; seashore paspalum, Paspalum vaginatum ; and bermudagrass, Cynodon dactylon ). In total, 412 cross-species polymorphic amplicons were identified. Over half of the primers generated reproducible cross-species or cross-genus amplicons. The transfer rate of SSR markers was correlated with the phylogenetic relationship (or genetic relatedness) of these species. The average transfer rate of genomic SSR markers was different from the average transfer rate of expressed sequence tag (EST)-SSR markers. The level of polymorphism was significantly higher among species (67%) than within species (34%), and was related to the degree of out-crossing for each species. The level of polymorphism detected within species was 57% from self-incompatible species, 39% from out-crossing species and 20% from self-pollinated species. Genomic SSRs detected a higher level of polymorphism than EST-SSRs. The use of transferred polymorphic SSR markers for the characterization and evaluation of germplasm is discussed.


Genetics Research | 2007

Genetic diversity of cultivated and wild-type peanuts evaluated with M13-tailed SSR markers and sequencing

Noelle A. Barkley; R. E. Dean; Roy N. Pittman; Ming L. Wang; C. Corley Holbrook; Gary A. Pederson

Thirty-one genomic SSR markers with a M13 tail attached were used to assess the genetic diversity of the peanut mini core collection. The M13-tailed method was effective in discriminating almost all the cultivated and wild accessions. A total of 477 alleles were detected with an average of 15.4 alleles per locus. The mean polymorphic information content (PIC) score was 0.687. The cultivated peanut (Arachis hypogaea L.) mini core produced a total of 312 alleles with an average of 10.1 alleles per locus. A neighbour-joining tree was constructed to determine the interspecific and intraspecific relationships in this data set. Almost all the peanut accessions in this data set classified into subspecies and botanical varieties such as subsp. hypogaea var. hypogaea, subsp. fastigiata var. fastigiata, and subsp. fastigiata var. vulgaris clustered with other accessions with the same classification, which lends further support to their current taxonomy. Alleles were sequenced from one of the SSR markers used in this study, which demonstrated that the repeat motif is conserved when transferring the marker across species borders. This study allowed the examination of the diversity and phylogenetic relationships in the peanut mini core which has not been previously reported.


BMC Research Notes | 2008

Discovering and verifying DNA polymorphisms in a mung bean [V. radiata (L.) R. Wilczek] collection by EcoTILLING and sequencing

Noelle A. Barkley; Ming L. Wang; Athey G Gillaspie; Rob E. Dean; Gary A. Pederson; Tracie M. Jenkins

BackgroundVigna radiata, which is classified in the family Fabaceae, is an important economic crop and a dietary staple in many developing countries. The species radiata can be further subdivided into varieties of which the variety sublobata is currently acknowledged as the putative progenitor of radiata. EcoTILLING was employed to identify single nucleotide polymorphisms (SNPs) and small insertions/deletions (INDELS) in a collection of Vigna radiata accessions.FindingsA total of 157 DNA polymorphisms in the collection were produced from ten primer sets when using V. radiata var. sublobata as the reference. The majority of polymorphisms detected were found in putative introns. The banding patterns varied from simple to complex as the number of DNA polymorphisms between two pooled samples increased. Numerous SNPs and INDELS ranging from 4–24 and 1–6, respectively, were detected in all fragments when pooling V. radiata var. sublobata with V. radiata var. radiata. On the other hand, when accessions of V. radiata var. radiata were mixed together and digested with CEL I relatively few SNPs and no INDELS were detected.ConclusionEcoTILLING was utilized to identify polymorphisms in a collection of mung bean, which previously showed limited molecular genetic diversity and limited morphological diversity in the flowers and pod descriptors. Overall, EcoTILLING proved to be a powerful genetic analysis tool providing the rapid identification of naturally occurring variation.


Journal of Agricultural and Food Chemistry | 2013

Oil, fatty acid, flavonoid, and resveratrol content variability and FAD2A functional SNP genotypes in the U.S. peanut mini-core collection.

Ming Li Wang; Charles Y. Chen; Brandon Tonnis; Noelle A. Barkley; David Pinnow; Roy N. Pittman; Jerry Davis; C. Corley Holbrook; H. Thomas Stalker; Gary A. Pederson

Peanut seeds contain high amounts of oil and protein as well as some useful bioactive phytochemicals which can contribute to human health. The U.S. peanut mini-core collection is an important genetic resource for improving seed quality and developing new cultivars. Variability of seed chemical composition within the mini-core was evaluated from freshly harvested seeds for two years. Oil, fatty acid composition, and flavonoid/resveratrol content were quantified by NMR, GC, and HPLC, respectively. Significant variability was detected in seed chemical composition among accessions and botanical varieties. Accessions were further genotyped with a functional SNP marker from the FAD2A gene using real-time PCR and classified into three genotypes with significantly different O/L ratios: wild type (G/G with a low O/L ratio <1.7), heterozygote (G/A with O/L ratio >1.4 but <1.7), and mutant (A/A with a high O/L ratio >1.7). The results from real-time PCR genotyping and GC fatty acid analysis were consistent. Accessions with high amounts of oil, quercetin, high seed weight, and O/L ratio were identified. The results from this study may be useful not only for peanut breeders, food processors, and product consumers to select suitable accessions or cultivars but also for curators to potentially expand the mini-core collection.


Euphytica | 2006

Molecular genetic evaluation of sorghum germplasm differing in response to fungal diseases: Rust (Puccinia purpurea) and anthracnose (Collectotrichum graminicola)

Ming Li Wang; Rob E. Dean; John E. Erpelding; Gary A. Pederson

To evaluate genetic diversity in relation to rust and anthracnose disease response, ninety-six accessions were randomly selected from the core collection database of the Germplasm Research Information Network (GRIN) and characterized by a set of 40 SSR markers. The mean value of polymorphism information content (PIC) was 0.8228. Two dendrograms were generated from the molecular genetic data and field morphological data, respectively. The genetic dendrogram demonstrates that the accessions can be classified into three main clades and nine subgroups. The branched subgroups correlated very well with the locations where the accessions were collected. Geographical origin of accessions had significant influences on genetic similarity of sorghum germplasm. Out of 96 accessions, only eight accessions were highly resistant to both rust and anthracnose. All the accessions from South Africa and Mali were highly resistant to anthracnose. The information from genetic classification would be useful for choosing parents to make crosses in sorghum breeding programs and classifying sorghum accessions in germplasm management.


Journal of Agricultural and Food Chemistry | 2011

Screening of the entire USDA Castor germplasm collection for oil content and fatty acid composition for optimum biodiesel production.

Ming Li Wang; J. B. Morris; Brandon Tonnis; David Pinnow; Jerry Davis; P. Raymer; Gary A. Pederson

Castor has tremendous potential as a feedstock for biodiesel production. The oil content and fatty acid composition in castor seed are important factors determining the price for production and affecting the key fuel properties of biodiesel. There are 1033 available castor accessions collected or donated from 48 countries worldwide in the USDA germplasm collection. The entire castor collection was screened for oil content and fatty acid composition by nuclear magnetic resonance (NMR) and gas chromatography (GC), respectively. Castor seeds on the average contain 48.2% oil with significant variability ranging from 37.2 to 60.6%. Methyl esters were prepared from castor seed by alkaline transmethylation. GC analysis of methyl esters confirmed that castor oil was composed primarily of eight fatty acids: 1.48% palmitic (C16:0), 1.58% stearic (C18:0), 4.41% oleic (C18:1), 6.42% linoleic (C18:2), 0.68% linolenic (C18:3), 0.45% gadoleic (C20:1), 84.51% ricinoleic (C18:1-1OH), and 0.47% dihydroxystearic (C18:0-2OH) acids. Significant variability in fatty acid composition was detected among castor accessions. Ricinoleic acid (RA) was positively correlated with dihydroxystearic acid (DHSA) but highly negatively correlated with the five other fatty acids except linolenic acid. The results for oil content and fatty acid composition obtained from this study will be useful for end-users to explore castor germplasm for biodiesel production.


Genetics Research | 2008

Phylogenetic relationships and genetic diversity of the USDA Vigna germplasm collection revealed by gene-derived markers and sequencing.

Ming Li Wang; Noelle A. Barkley; Graves A. Gillaspie; Gary A. Pederson

Phylogenetic relationships in the USDA Vigna germplasm collection are somewhat unclear and their genetic diversity has not been measured empirically. To reveal interspecific phylogenetic relationships and assess their genetic diversity, 48 accessions representing 12 Vigna species were selected, and 30 gene-derived markers from legumes were employed. Some high-quality amplicons were sequenced. Indels (insertion/deletions) were discovered from the sequence alignments that were specific identifiers for some Vigna species. With regard to revealing polymorphisms, intron-spanning markers were more effective than exon-derived markers. These gene-derived markers were more successful in revealing interspecific polymorphisms than intraspecific polymorphisms at both the DNA fragment and sequence levels. Two different dendrograms were generated from DNA fragment data and sequence data, respectively. The results from these two dendrograms supported each other and showed similar phylogenetic relationships among the Vigna species investigated. The accessions clustered into four main groups and 13 subgroups. Each subgroup represents a subgenus or a species. Phylogenetic analysis revealed that an accession might be misclassified in our collection. The putative misclassified accession was further supported by seed morphology. Limited intraspecific genetic diversity was revealed by these gene-derived markers and/or sequences. The USDA Vigna germplasm collection currently consists of multiple species with many accessions further classified into specific subspecies, but very few subspecies of the total subspecies available exist within the collection. Based on our results, more attention should be paid to the subspecies, wild forms and/or botanical varieties for future curation in order to expand the genetic diversity of Vigna germplasm in the USDA collection.

Collaboration


Dive into the Gary A. Pederson's collaboration.

Top Co-Authors

Avatar

Ming Li Wang

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Noelle A. Barkley

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Brandon Tonnis

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Zhanguo Xin

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Corley Holbrook

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Gloria Burow

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Burke

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge