Gloria Caminal
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gloria Caminal.
Chemosphere | 2009
Ernest Marco-Urrea; Miriam Pérez-Trujillo; Teresa Vicent; Gloria Caminal
A screening using four white-rot fungi (Trametes versicolor, Irpex lacteus, Ganoderma lucidum and Phanerochaete chrysosporium) was performed on the degradation of 10 mg L(-1) of ibuprofen (IBU, anti-inflammatory), clofibric acid (CLOFI, lipid regulator) and carbamazepine (CARBA, antiepileptic/analgetic) after 7 d of incubation. Whereas IBU was extensively degraded by all the fungi tested, T. versicolor was the only strain able to degrade either CLOFI (approximately 91%) and CARBA (approximately 58%), although the latter was also degraded by G. lucidum (approximately 47%). In vitro experiments using manganese peroxidase and laccase-mediator system showed that extracellular fungal enzyme systems did not appear to play a role in the first step of degradation. However, our in vivo studies using the cytochrome P450 inhibitors 1-aminobenzotriazole and piperonyl butoxide suggested that the cytochrome P450 system may be involved in the first step of CLOFI and CARBA oxidation by T. versicolor. During the very early stages of IBU degradation by T. versicolor, two hydroxylated metabolites were detected: 1-hydroxy ibuprofen and 2-hydroxy ibuprofen. These byproducts were subsequently degraded by the fungus to 1,2-dihydroxy ibuprofen, that was not reported in biological systems to date. Furthermore, these results are of particular interest because CLOFI and CARBA are highly persistent in the aquatic environment and they pass unchanged or poorly transformed in wastewater treatment plants.
Bioresource Technology | 2010
Ernest Marco-Urrea; Miriam Pérez-Trujillo; Paqui Blánquez; Teresa Vicent; Gloria Caminal
The white-rot fungus Trametes vesicolor degraded naproxen (10 mg L(-1)) in a liquid medium to non-detectable levels after 6h. When naproxen was added in the range of concentrations typically found in the environment (55 microg L(-1)), it was almost completely degraded (95%) after 5h. In vitro degradation experiments with purified laccase and purified laccase plus mediator 1-hydroxybenzotriazol showed slight and almost complete naproxen degradation, respectively. A noticeable inhibition on naproxen degradation was also observed when the cytochrome P450 inhibitor 1-aminobenzotriazole was added to the fungal cultures. These data suggest that both enzymatic systems could play a role in naproxen degradation. 2-(6-hydroxynaphthalen-2-yl)propanoic acid and 1-(6-methoxynaphthalen-2-yl)ethanone were structurally elucidated by HPLC-DAD-MS and NMR as degradation intermediates of naproxen. After 6h of incubation, both parent compound and intermediates disappeared from the medium. The non-toxicity of the treated medium was confirmed by Microtox test.
Science of The Total Environment | 2011
Mª Jesús García-Galán; Carlos E. Rodríguez-Rodríguez; Teresa Vicent; Gloria Caminal; M. Silvia Díaz-Cruz; Damià Barceló
Degradation of the sulfonamide sulfamethazine (SMZ) by the white-rot fungus Trametes versicolor was assessed. Elimination was achieved to nearly undetectable levels after 20 h in liquid medium when SMZ was added at 9 mg L(-1). Experiments with purified laccase and laccase-mediators resulted in almost complete removal. On the other hand, inhibition of SMZ degradation was observed when piperonilbutoxide, a cytochrome P450-inhibitor, was added to the fungal cultures. UPLC-QqTOF-MS analysis allowed the identification and confirmation of 4 different SMZ degradation intermediates produced by fungal cultures or purified laccase: desulfo-SMZ, N4-formyl-SMZ, N4-hydroxy-SMZ and desamino-SMZ; nonetheless SMZ mineralization was not demonstrated with the isotopically labeled sulfamethazine-phenyl-13C6 after 7 days. Inoculation of T. versicolor to sterilized sewage sludge in solid-phase systems showed complete elimination of SMZ and also of other sulfonamides (sulfapyridine, sulfathiazole) at real environmental concentrations, making this fungus an interesting candidate for further remediation research.
Water Research | 2010
Ernest Marco-Urrea; Jelena Radjenovic; Gloria Caminal; Mira Petrovic; Teresa Vicent; Damià Barceló
Biological advanced oxidation of the pharmaceuticals clofibric acid (CA), carbamazepine (CBZP), atenolol (ATL) and propranolol (PPL) is reported for the first time. Extracellular oxidizing species were produced through a quinone redox cycling mechanism catalyzed by an intracellular quinone reductase and any of the ligninolytic enzymes of Trametes versicolor after addition of the lignin-derived quinone 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe(3+)-oxalate in the medium. Time-course experiments with approximately 10mg L(-1) of initial pharmaceutical concentration resulted in percent degradations above 80% after 6h of incubation. Oxidation of pharmaceuticals was only observed under DBQ redox cycling conditions. A similar degradation pattern was observed when CBZP was added at the environmentally relevant concentration of 50 microg L(-1). Depletion of DBQ due to the attack of oxidizing agents was assumed to be the main limiting factor of pharmaceutical degradation. The main degradation products, that resulted to be pharmaceutical hydroxylated derivatives, were structurally elucidated. The detected 4- and 7-hydroxycarbamazepine intermediates of CBZP degradation were not reported to date. Total disappearance of intermediates was observed in all the experiments at the end of the incubation period.
Journal of Biotechnology | 2008
Luis Vidal; Jaume Pinsach; Gerald Striedner; Gloria Caminal; Pau Ferrer
An alternative approach to the use of antibiotic selection markers for maintenance of recombinant plasmid vectors in Escherichia coli based on an aminoacid auxotrophy complementation has been developed. An E. coli M15-derivated glycine-auxotrophic strain of has been constructed by means of a PCR-based approach. This mutant strain contains a deletion in the glyA gene, which encodes for serine hydroxymethyl transferase, an enzyme involved in the main glycine biosynthesis pathway in E. coli. Also, we have constructed the complementation plasmid pQEalphabetarham derived from the commercially available expression vector pQE40 (QIAGEN) containing the glyA homologous gene under the control of the constitutive weak promoter P3. By using the E. coli M15DeltaglyA strain combined with the pQEalphabetarham plasmid, a successful complementation system was achieved, allowing transformants to grow on minimal media without glycine supplementation. The capability of the new system E. coli M15DeltaglyA/pQEalphabetarham for recombinant overproduction of rhamnulose 1-phosphate aldolase was evaluated in antibiotic free fed-batch cultures at controlled specific growth rate, obtaining high cell density cultures and high RhuA production and productivity levels comparable to those obtained with the conventional system. The new selection marker based on glycine-auxotrophy is a promising genetic tool, not only for recombinant protein production, but also for plasmid DNA production processes, where antibiotics can not be present in the medium formulation.
Chemosphere | 2010
Ernest Marco-Urrea; Miriam Pérez-Trujillo; Carles Cruz-Morató; Gloria Caminal; Teresa Vicent
Ketoprofen is a nonsteroidal anti-inflammatory drug that has been detected in the environment in the range of ng L(-1)-microg L(-1) due to its low degradability in some wastewater treatment plants. In this study, the use of the white-rot fungus Trametes versicolor to effectively degrade ketoprofen in a defined liquid medium was assessed. The fungus eliminated ketoprofen to nondetectable levels in 24h when it was added at 10mgL(-1) whereas at low concentration of 40microgL(-1) it was almost completely removed (95%) after 5h. Low extracellular laccase activity was detected in the T. versicolor cultures but the addition of the laccase-mediator system did not lead to ketoprofen oxidation. The cytochrome P-450 inhibitor 1-aminobenzotriazole reduced ketoprofen oxidation. These data suggest that the first oxidation step is cytochrome P450 mediated. During time-course degradation experiments, three intermediates were structurally elucidated and quantified by HPLC-DAD-MS and NMR: 2-[3-(4-hydroxybenzoyl)phenyl]-propanoic acid, 2-[(3-hydroxy(phenyl)methyl)phenyl]-propanoic acid, and 2-(3-benzoyl-4-hydroxyphenyl)-propanoic acid. The latter was reported for the first time in biological systems. After 7 d of incubation, only small amounts of 2-[(3-hydroxy(phenyl)methyl)phenyl]-propanoic acid (0.08mg) remained in the liquid medium in comparison with the initial ketoprofen dose (1.0mg), suggesting possible mineralization of ketoprofen.
Science of The Total Environment | 2012
Pablo Gago-Ferrero; Marina Badia-Fabregat; Alba Olivares; Benjamin Piña; Paqui Blánquez; Teresa Vicent; Gloria Caminal; M. Silvia Díaz-Cruz; Damià Barceló
Photodecomposition might be regarded as one of the most important abiotic factors affecting the fate of UV absorbing compounds in the environment and photocatalysis has been suggested as an effective method to degrade organic pollutants. However, UV filters transformation appears to be a complex process, barely addressed to date. The white rot fungus Trametes versicolor is considered as a promising alternative to conventional aerobic bacterial degradation, as it is able to metabolise a wide range of xenobiotics. This study focused on both degradation processes of two widely used UV filters, benzophenone-3 (BP3) and benzophenone-1 (BP1). Fungal treatment resulted in the degradation of more than 99% for both sunscreens in less than 24 h, whereas photodegradation was very inefficient, especially for BP3, which remained unaltered upon 24 h of simulated sunlight irradiation. Analysis of metabolic compounds generated showed BP1 as a minor by-product of BP3 degradation by T. versicolor while the main intermediate metabolites were glycoconjugate derivatives. BP1 and BP3 showed a weak, but significant estrogenic activity (EC50 values of 0.058 mg/L and 12.5 mg/L, respectively) when tested by recombinant yeast assay (RYA), being BP1 200-folds more estrogenic than BP3. Estrogenic activity was eliminated during T. versicolor degradation of both compounds, showing that none of the resulting metabolites possessed significant estrogenic activity at the concentrations produced. These results demonstrate the suitability of this method to degrade both sunscreen agents and to eliminate estrogenic activity.
Bioresource Technology | 2010
Carlos E. Rodríguez-Rodríguez; Ernest Marco-Urrea; Gloria Caminal
Growth and activity of the white-rot fungus Trametes versicolor on sewage sludge were assessed in bioslurry and solid-phase systems. Bioslurry cultures with different loads of sludge (10%, 25% and 38%, w/v) were performed. A lag phase of at least 2 d appeared in the 25 and 38%-cultures, however, the total fungal biomass was higher for the latter and lower for the 10%-culture after 30 d, as revealed by ergosterol determination. Detectable laccase activity levels were found in the 10 and 25%-cultures (up to 1308 and 2588 AUL(-1), respectively) while it was negligible in the 38%-culture. Important levels of ergosterol and laccase were obtained over a 60 d period in sludge solid-phase cultures amended with different concentrations of wheat straw pellets as lignocellulosic bulking material. Degradation experiments in 25%-bioslurry cultures spiked with naproxene (NAP, analgesic) and carbamazepine (CBZ, antiepileptic) showed depletion of around 47% and 57% within 24h, respectively. Complete depletion of NAP and around 48% for CBZ were achieved within 72 h in sludge solid cultures with 38% bulking material. CBZ degradation is especially remarkable due to its high persistence in wastewater treatment plants. Results showed that T. versicolor may be an interesting bioremediation agent for elimination of emerging pollutants in sewage sludge.
Bioresource Technology | 2011
Carlos E. Rodríguez-Rodríguez; Aleksandra Jelic; Marta Llorca; Marinella Farré; Gloria Caminal; Mira Petrovic; Damià Barceló; Teresa Vicent
For safe biosolid-land-applying, sludge should be contaminant-free. However, it may contain important amounts of micropollutants, not removed in the wastewater-treatment-processes. An alternative treatment with the fungus Trametes versicolor was applied in sterile solid-phase systems consisting of sludge and a lignocellulosic substrate. Fungal colonization and activity were demonstrated during the process, according to monitoring of ergosterol, laccase activity and the naproxen-degradation test (ND24). Fourteen out of 43 analyzed pharmaceuticals were found in the raw sludge. After treatment, phenazone, bezafibrate, fenofibrate, cimetidine, clarithromycin, sulfamethazine and atenolol were completely removed, while removals between 42% and 80% were obtained for the remaining pharmaceuticals. Toxicological analyses (Daphnia magna, Vibrio fischeri and seed germination) showed an important reduction in sludge toxicity after treatment. Results suggest that a solid-phase treatment with T. versicolor may reduce the ecotoxicological impact of micropollutants present in sewage sludge. This is the first report of a fungal-approach for elimination of emerging pollutants from biosolids.
Chemosphere | 2009
Núria Casas; Teodor Parella; Teresa Vicent; Gloria Caminal; Montserrat Sarrà
The feasibility of degrading triphenylmethane dyes by Trametes versicolor and laccase has been investigated for the following dyes: Acid Fuchsin, Brilliant Green 1, Basic Fuchsin, Methyl Green or Acid Green 16. The toxicity level of triphenylmethane dyes is linked to their basic character, but significant detoxification is obtained when there is biodegradation. Identification of enzymatic degradation products by (1)H NMR made it possible to propose a general rule for the laccase attack on triphenylmethane compounds. The enzyme completely degrades the molecular part of the canonical resonance substructures of dyes, because no N-substituted, mono-N and di-N,N substituted p-amine aromatic residues seem to be wholly degraded. No enzymatic degradation is observed in the cases of either the non-substituted or trisubstituted-N,N,Np-amine aromatic residues. On the other hand, for all the dyes tested, no aromatic residues are detected after fungal treatment; this means that T. versicolor is more capable of performing further degradation than is laccase. The results of this study demonstrated that compounds with a triphenylmethane structure can be degraded by T. versicolor even if they are highly toxic. The enzyme laccase plays an important role in the attack on the structure and a general rule for predicting which products would be obtained after the enzymatic treatment is suggested.