Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Teresa Vicent is active.

Publication


Featured researches published by Teresa Vicent.


Chemosphere | 2009

Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor

Ernest Marco-Urrea; Miriam Pérez-Trujillo; Teresa Vicent; Gloria Caminal

A screening using four white-rot fungi (Trametes versicolor, Irpex lacteus, Ganoderma lucidum and Phanerochaete chrysosporium) was performed on the degradation of 10 mg L(-1) of ibuprofen (IBU, anti-inflammatory), clofibric acid (CLOFI, lipid regulator) and carbamazepine (CARBA, antiepileptic/analgetic) after 7 d of incubation. Whereas IBU was extensively degraded by all the fungi tested, T. versicolor was the only strain able to degrade either CLOFI (approximately 91%) and CARBA (approximately 58%), although the latter was also degraded by G. lucidum (approximately 47%). In vitro experiments using manganese peroxidase and laccase-mediator system showed that extracellular fungal enzyme systems did not appear to play a role in the first step of degradation. However, our in vivo studies using the cytochrome P450 inhibitors 1-aminobenzotriazole and piperonyl butoxide suggested that the cytochrome P450 system may be involved in the first step of CLOFI and CARBA oxidation by T. versicolor. During the very early stages of IBU degradation by T. versicolor, two hydroxylated metabolites were detected: 1-hydroxy ibuprofen and 2-hydroxy ibuprofen. These byproducts were subsequently degraded by the fungus to 1,2-dihydroxy ibuprofen, that was not reported in biological systems to date. Furthermore, these results are of particular interest because CLOFI and CARBA are highly persistent in the aquatic environment and they pass unchanged or poorly transformed in wastewater treatment plants.


Water Research | 2003

Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system

Julián Carrera; Juan A. Baeza; Teresa Vicent; Javier Lafuente

The biological nitrogen removal (BNR) process is the most common method for removing low quantities of ammonium from wastewater, but this is not the usual treatment for high-strength ammonium wastewater. The capacity to biologically remove the nitrogen content of a real industrial wastewater with a concentration of 5000 g N-NH(4)(+) L(-1) is demonstrated in this work. The experimental system used is based on a two-sludge system, with a nitrifying activated sludge and a denitrifying activated sludge. This system treated real industrial wastewater for 450 days, and during this period, it showed the capacity for oxidizing all the ammonium at average nitrification rates between 0.11 and 0.18 g N-NH(4)(+)g VSS(-1)d(-1). Two key process parameters were evaluated: the maximum nitrification rate (MNR) and the maximum denitrification rate (MDR). MNR was determined in continuous operation at three different temperatures: 15 degrees C, 20 degrees C and 25 degrees C, obtaining values of 0.10, 0.21 and 0.37 g N-NH(4)(+) g VSS(-1)d(-1), respectively. Complete denitrification was achieved using two different industrial carbon sources, one containing mainly ethanol and the other one methanol. The MDR reached with ethanol (0.64 g N-NO(x)(-) g VSS(-1)d(-1)) was about 6 times higher than the MDR reached with methanol (0.11g N-NO(x)(-)g VSS(-1)d(-1)).


Bioresource Technology | 2010

Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR

Ernest Marco-Urrea; Miriam Pérez-Trujillo; Paqui Blánquez; Teresa Vicent; Gloria Caminal

The white-rot fungus Trametes vesicolor degraded naproxen (10 mg L(-1)) in a liquid medium to non-detectable levels after 6h. When naproxen was added in the range of concentrations typically found in the environment (55 microg L(-1)), it was almost completely degraded (95%) after 5h. In vitro degradation experiments with purified laccase and purified laccase plus mediator 1-hydroxybenzotriazol showed slight and almost complete naproxen degradation, respectively. A noticeable inhibition on naproxen degradation was also observed when the cytochrome P450 inhibitor 1-aminobenzotriazole was added to the fungal cultures. These data suggest that both enzymatic systems could play a role in naproxen degradation. 2-(6-hydroxynaphthalen-2-yl)propanoic acid and 1-(6-methoxynaphthalen-2-yl)ethanone were structurally elucidated by HPLC-DAD-MS and NMR as degradation intermediates of naproxen. After 6h of incubation, both parent compound and intermediates disappeared from the medium. The non-toxicity of the treated medium was confirmed by Microtox test.


Water Research | 2013

Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor

Carles Cruz-Morató; Laura Ferrando-Climent; Sara Rodriguez-Mozaz; Damià Barceló; Ernest Marco-Urrea; Teresa Vicent; Montserrat Sarrà

The constant detection of pharmaceuticals (PhACs) in the environment demonstrates the inefficiency of conventional wastewater treatment plants to completely remove them from wastewaters. So far, many studies have shown the feasibility of using white rot fungi to remove these contaminants. However, none of them have studied the degradation of several PhACs in real urban wastewater under non-sterile conditions, where mixtures of contaminants presents at low concentrations (ng L(-1) to μg L(-1)) as well as other active microorganisms are present. In this work, a batch fluidized bed bioreactor was used to study, for the first time, the degradation of PhACs present in urban wastewaters at their pre-existent concentrations under non-sterile conditions. Glucose and ammonium tartrate were continuously supplied as carbon and nitrogen source, respectively, and pH was maintained at 4.5. Complete removal of 7 out of the 10 initially detected PhACs was achieved in non-sterile treatment, while only 2 were partially removed and 1 of the PhACs analyzed increased its concentration. In addition, Microtox test showed an important reduction of toxicity in the wastewater after the treatment.


Science of The Total Environment | 2011

Biodegradation of sulfamethazine by Trametes versicolor: Removal from sewage sludge and identification of intermediate products by UPLC-QqTOF-MS

Mª Jesús García-Galán; Carlos E. Rodríguez-Rodríguez; Teresa Vicent; Gloria Caminal; M. Silvia Díaz-Cruz; Damià Barceló

Degradation of the sulfonamide sulfamethazine (SMZ) by the white-rot fungus Trametes versicolor was assessed. Elimination was achieved to nearly undetectable levels after 20 h in liquid medium when SMZ was added at 9 mg L(-1). Experiments with purified laccase and laccase-mediators resulted in almost complete removal. On the other hand, inhibition of SMZ degradation was observed when piperonilbutoxide, a cytochrome P450-inhibitor, was added to the fungal cultures. UPLC-QqTOF-MS analysis allowed the identification and confirmation of 4 different SMZ degradation intermediates produced by fungal cultures or purified laccase: desulfo-SMZ, N4-formyl-SMZ, N4-hydroxy-SMZ and desamino-SMZ; nonetheless SMZ mineralization was not demonstrated with the isotopically labeled sulfamethazine-phenyl-13C6 after 7 days. Inoculation of T. versicolor to sterilized sewage sludge in solid-phase systems showed complete elimination of SMZ and also of other sulfonamides (sulfapyridine, sulfathiazole) at real environmental concentrations, making this fungus an interesting candidate for further remediation research.


Water Research | 2010

Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor

Ernest Marco-Urrea; Jelena Radjenovic; Gloria Caminal; Mira Petrovic; Teresa Vicent; Damià Barceló

Biological advanced oxidation of the pharmaceuticals clofibric acid (CA), carbamazepine (CBZP), atenolol (ATL) and propranolol (PPL) is reported for the first time. Extracellular oxidizing species were produced through a quinone redox cycling mechanism catalyzed by an intracellular quinone reductase and any of the ligninolytic enzymes of Trametes versicolor after addition of the lignin-derived quinone 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe(3+)-oxalate in the medium. Time-course experiments with approximately 10mg L(-1) of initial pharmaceutical concentration resulted in percent degradations above 80% after 6h of incubation. Oxidation of pharmaceuticals was only observed under DBQ redox cycling conditions. A similar degradation pattern was observed when CBZP was added at the environmentally relevant concentration of 50 microg L(-1). Depletion of DBQ due to the attack of oxidizing agents was assumed to be the main limiting factor of pharmaceutical degradation. The main degradation products, that resulted to be pharmaceutical hydroxylated derivatives, were structurally elucidated. The detected 4- and 7-hydroxycarbamazepine intermediates of CBZP degradation were not reported to date. Total disappearance of intermediates was observed in all the experiments at the end of the incubation period.


Science of The Total Environment | 2014

Hospital wastewater treatment by fungal bioreactor: removal efficiency for pharmaceuticals and endocrine disruptor compounds.

Carles Cruz-Morató; Daniel Lucas; Marta Llorca; Sara Rodriguez-Mozaz; Marina Gorga; Mira Petrovic; Damià Barceló; Teresa Vicent; Montserrat Sarrà; Ernest Marco-Urrea

Hospital effluents contribute to the occurrence of emerging contaminants in the environment due to their high load of pharmaceutical active compounds (PhACs) and some endocrine disruptor compounds (EDCs). Nowadays, hospital wastewaters are co-treated with urban wastewater; however, the dilution factor and the inefficiency of wastewater treatment plants in the removal of PhACs and EDCs make inappropriate the co-treatment of both effluents. In this paper, a new alternative to pre-treat hospital wastewater concerning the removal of PhACs and EDCs is presented. The treatment was carried out in a batch fluidized bed bioreactor under sterile and non-sterile conditions with Trametes versicolor pellets. Results on non-sterile experiments pointed out that 46 out of the 51 detected PhACs and EDCs were partially to completely removed. The total initial PhAC amount into the bioreactor was 8185 μg in sterile treatment and 8426 μg in non-sterile treatment, and the overall load elimination was 83.2% and 53.3% in their respective treatments. In addition, the Microtox test showed reduction of wastewater toxicity after the treatment. Hence, the good efficiency of the fungal treatment regarding removal of the wide diversity of PhACs and EDCs detected in hospital effluents is demonstrated.


Waste Management | 2010

Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield

Lucía Martín-González; L.F. Colturato; Xavier Font; Teresa Vicent

Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 degrees C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5L continuous reactor. Biogas yield increased from 0.38+/-0.02 L g VS(feed)(-1) to 0.55+/-0.05 L g VS(feed)(-1) as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.


Bioresource Technology | 2011

Thermophilic co-digestion of organic fraction of municipal solid wastes with FOG wastes from a sewage treatment plant : reactor performance and microbial community monitoring

Lucía Martín-González; Rita Castro; M. A. Pereira; M. M. Alves; Xavier Font; Teresa Vicent

Working at thermophilic conditions instead of mesophilic, and also the addition of a co-substrate, are both the ways to intend to improve the anaerobic digestion of the source-collected organic fraction of municipal solid wastes (SC-OFMSW). Addition of sewage treatment plant fat, oil and grease wastes (STP-FOGW), that are nowadays sent to landfill, would represent an opportunity to recover a wasted methane potential and, moreover, improve the whole process. In this study, after a first period feeding only SC-OFMSW, a co-digestion step was performed maintaining thermophilic conditions. During the co-digestion period enhancements in biogas production (52%) and methane yield (36%) were achieved. In addition, monitoring of microbial structure by using PCR-DGGE and cloning techniques showed that bacterial community profiles clustered in two distinct groups, before and after the extended contact with STP-FOGW, being more affected by the STP-FOGW addition than the archaeal one.


Chemosphere | 2010

White-rot fungus-mediated degradation of the analgesic Ketoprofen and identification of intermediates by HPLC-DAD-MS and NMR

Ernest Marco-Urrea; Miriam Pérez-Trujillo; Carles Cruz-Morató; Gloria Caminal; Teresa Vicent

Ketoprofen is a nonsteroidal anti-inflammatory drug that has been detected in the environment in the range of ng L(-1)-microg L(-1) due to its low degradability in some wastewater treatment plants. In this study, the use of the white-rot fungus Trametes versicolor to effectively degrade ketoprofen in a defined liquid medium was assessed. The fungus eliminated ketoprofen to nondetectable levels in 24h when it was added at 10mgL(-1) whereas at low concentration of 40microgL(-1) it was almost completely removed (95%) after 5h. Low extracellular laccase activity was detected in the T. versicolor cultures but the addition of the laccase-mediator system did not lead to ketoprofen oxidation. The cytochrome P-450 inhibitor 1-aminobenzotriazole reduced ketoprofen oxidation. These data suggest that the first oxidation step is cytochrome P450 mediated. During time-course degradation experiments, three intermediates were structurally elucidated and quantified by HPLC-DAD-MS and NMR: 2-[3-(4-hydroxybenzoyl)phenyl]-propanoic acid, 2-[(3-hydroxy(phenyl)methyl)phenyl]-propanoic acid, and 2-(3-benzoyl-4-hydroxyphenyl)-propanoic acid. The latter was reported for the first time in biological systems. After 7 d of incubation, only small amounts of 2-[(3-hydroxy(phenyl)methyl)phenyl]-propanoic acid (0.08mg) remained in the liquid medium in comparison with the initial ketoprofen dose (1.0mg), suggesting possible mineralization of ketoprofen.

Collaboration


Dive into the Teresa Vicent's collaboration.

Top Co-Authors

Avatar

Gloria Caminal

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Damià Barceló

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Montserrat Sarrà

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Paqui Blánquez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Ernest Marco-Urrea

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Sara Rodriguez-Mozaz

Catalan Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Xavier Gabarrell

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Marina Badia-Fabregat

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Carles Cruz-Morató

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Xavier Font

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge