Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Go Nagamatsu is active.

Publication


Featured researches published by Go Nagamatsu.


Development | 2006

The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage

Shosei Yoshida; Mamiko Sukeno; Toshinori Nakagawa; Kazuyuki Ohbo; Go Nagamatsu; Toshio Suda; Yo-ichi Nabeshima

Mammalian spermatogenesis is maintained by a continuous supply of differentiating cells from self-renewing stem cells. The stem cell activity resides in a small subset of primitive germ cells, the undifferentiated spermatogonia. However, the relationship between the establishment of this population and the initiation of differentiation in the developing testes remains unclear. In this study, we have investigated this issue by using the unique expression of Ngn3, which is expressed specifically in the undifferentiated spermatogonia, but not in the differentiating spermatogonia or their progenitors, the gonocytes. Our lineage analyses demonstrate that the first round of mouse spermatogenesis initiates directly from gonocytes, without passing through the Ngn3-expressing stage (Ngn3- lineage). By contrast, the subsequent rounds of spermatogenesis are derived from Ngn3-positive undifferentiated spermatogonia, which are also immediate descendents of the gonocytes and represent the stem cell function (Ngn3+ lineage). Thus, in mouse spermatogenesis, the state of the undifferentiated spermatogonia is not an inevitable step but is a developmental option that ensures continuous sperm production. In addition, the segregation of gonocytes into undifferentiated spermatogonia (Ngn3+ lineage) or differentiating spermatogonia (Ngn3- lineage) is topographically related to the establishment of the seminiferous epithelial cycle, thus suggesting a role of somatic components in the establishment of stem cells.


Nature | 2016

Reconstitution in vitro of the entire cycle of the mouse female germ line

Orie Hikabe; Nobuhiko Hamazaki; Go Nagamatsu; Yayoi Obata; Yuji Hirao; Norio Hamada; So Shimamoto; Takuya Imamura; Kinichi Nakashima; Mitinori Saitou; Katsuhiko Hayashi

The female germ line undergoes a unique sequence of differentiation processes that confers totipotency to the egg. The reconstitution of these events in vitro using pluripotent stem cells is a key achievement in reproductive biology and regenerative medicine. Here we report successful reconstitution in vitro of the entire process of oogenesis from mouse pluripotent stem cells. Fully potent mature oocytes were generated in culture from embryonic stem cells and from induced pluripotent stem cells derived from both embryonic fibroblasts and adult tail tip fibroblasts. Moreover, pluripotent stem cell lines were re-derived from the eggs that were generated in vitro, thereby reconstituting the full female germline cycle in a dish. This culture system will provide a platform for elucidating the molecular mechanisms underlying totipotency and the production of oocytes of other mammalian species in culture.


Cell Stem Cell | 2008

Stem cell defects in ATM-deficient undifferentiated spermatogonia through DNA damage-induced cell-cycle arrest.

Keiyo Takubo; Masako Ohmura; Masaki Azuma; Go Nagamatsu; Wakako Yamada; Fumio Arai; Atsushi Hirao; Toshio Suda

Mammalian spermatogenesis is maintained by stem cell capacity within undifferentiated spermatogonial subpopulation. Here, using a combination of surface markers, we describe a purification method for undifferentiated spermatogonia. Flow cytometric analysis revealed that this population is composed of Plzf-positive cells and exhibits quiescence and the side population phenotype, fulfilling general stem cell criteria. We then applied this method to analyze undifferentiated spermatogonia and stem cell activity of Atm(-/-) mice. Atm(-/-) testis shows progressive depletion of undifferentiated spermatogonia accompanied by cell-cycle arrest. In Atm(-/-) undifferentiated spermatogonia, a self-renewal defect was observed in vitro and in vivo. Accumulation of DNA damage and activation of the p19(Arf)-p53-p21(Cip1/Waf1) pathway were observed in Atm(-/-) undifferentiated spermatogonia. Moreover, suppression of p21(Cip1/Waf1) in an Atm(-/-) background restored transplantation ability of undifferentiated spermatogonia, indicating that ATM plays an essential role in maintenance of undifferentiated spermatogonia and their stem cell capacity by suppressing DNA damage-induced cell-cycle arrest.


Journal of Biological Chemistry | 2011

A germ cell-specific gene, Prmt5, works in somatic cell reprogramming.

Go Nagamatsu; Takeo Kosaka; Miyuri Kawasumi; Taisuke Kinoshita; Keiyo Takubo; Hideo Akiyama; Tetsuo Sudo; Takashi Kobayashi; Mototsugu Oya; Toshio Suda

Germ cells possess the unique ability to acquire totipotency during development in vivo as well as give rise to pluripotent stem cells under the appropriate conditions in vitro. Recent studies in which somatic cells were experimentally converted into pluripotent stem cells revealed that genes expressed in primordial germ cells (PGCs), such as Oct3/4, Sox2, and Lin28, are involved in this reprogramming. These findings suggest that PGCs may be useful for identifying factors that successfully and efficiently reprogram somatic cells into toti- and/or pluripotent stem cells. Here, we show that Blimp-1, Prdm14, and Prmt5, each of which is crucial for PGC development, have the potential to reprogram somatic cells into pluripotent stem cells. Among them, Prmt5 exhibited remarkable reprogramming of mouse embryonic fibroblasts into which Prmt5, Klf4, and Oct3/4 were introduced. The resulting cells exhibited pluripotent gene expression, teratoma formation, and germline transmission in chimeric mice, all of which were indistinguishable from those induced with embryonic stem cells. These data indicate that some of the factors that play essential roles in germ cell development are also active in somatic cell reprogramming.


Biochemical and Biophysical Research Communications | 2011

Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

Taisuke Kinoshita; Go Nagamatsu; Takeo Kosaka; Keiyo Takubo; Akitsu Hotta; James Ellis; Toshio Suda

During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.


Stem Cells | 2008

Identification of Stem Cells During Prepubertal Spermatogenesis via Monitoring of Nucleostemin Promoter Activity

Masako Ohmura; Kazuhito Naka; Takayuki Hoshii; Teruyuki Muraguchi; Haruhiko Shugo; Akira Tamase; Noriyuki Uema; Takako Ooshio; Fumio Arai; Keiyo Takubo; Go Nagamatsu; Isao Hamaguchi; Minoru Takagi; Masahiko Ishihara; Kazuhiro Sakurada; Hiromasa Miyaji; Toshio Suda; Atsushi Hirao

The nucleostemin (NS) gene encodes a nucleolar protein found at high levels in several types of stem cells and tumor cell lines. The function of NS is unclear but it may play a critical role in S‐phase entry by stem/progenitor cells. Here we characterize NS expression in murine male germ cells. Although NS protein was highly expressed in the nucleoli of all primordial germ cells, only a limited number of gonocytes showed NS expression in neonatal testes. In adult testes, NS protein was expressed at high levels in the nucleoli of spermatogonia and primary spermatocytes but at only low levels in round spermatids. To evaluate the properties of cells expressing high levels of NS, we generated transgenic reporter mice expressing green fluorescent protein (GFP) under the control of the NS promoter (NS‐GFP Tg mice). In adult NS‐GFP Tg testes, GFP and endogenous NS protein expression were correlated in spermatogonia and spermatocytes but GFP was also ectopically expressed in elongated spermatids and sperm. In testes of NS‐GFP Tg embryos, neonates, and 10‐day‐old pups, however, GFP expression closely coincided with endogenous NS expression in developing germ cells. In contrast to a previous report, our results support the existence in neonatal testes of spermatogonial stem cells with long‐term repopulating capacity. Furthermore, our data show that NS expression does not correlate with cell‐cycle status during prepuberty, and that strong NS expression is essential for the maintenance of germline stem cell proliferation capacity. We conclude that NS is a marker of undifferentiated status in the germ cell lineage during prepubertal spermatogenesis.


Journal of Biological Chemistry | 2012

Optimal Ratio of Transcription Factors for Somatic Cell Reprogramming

Go Nagamatsu; Shigeru Saito; Takeo Kosaka; Keiyo Takubo; Taisuke Kinoshita; Mototsugu Oya; Katsuhisa Horimoto; Toshio Suda

Background: The somatic cell reprogramming factors do not always induce pluripotency. Results: The optimal ratio of the reprogramming factors is Oct3/4-high, Sox2-low, Klf4-high, and c-Myc-high. Conclusion: Among the various reprogramming transcription factor combinations, high Oct3/4 and low Sox2 produced the most efficient results. Significance: The overall gene expression profiles between the high and low efficiency conditions provide novel insights for somatic cell reprogramming. Somatic cell reprogramming is achieved by four reprogramming transcription factors (RTFs), Oct3/4, Sox2, Klf4, and c-Myc. However, in addition to the induction of pluripotent cells, these RTFs also generate pseudo-pluripotent cells, which do not show Nanog promoter activity. Therefore, it should be possible to fine-tune the RTFs to produce only fully pluripotent cells. For this study, a tagging system was developed to sort induced pluripotent stem (iPS) cells according to the expression levels of each of the four RTFs. Using this system, the most effective ratio (Oct3/4-high, Sox2-low, Klf4-high, c-Myc-high) of the RTFs was 88 times more efficient at producing iPS cells than the worst effective ratio (Oct3/4-low, Sox2-high, Klf4-low, c-Myc-low). Among the various RTF combinations, Oct3/4-high and Sox2-low produced the most efficient results. To investigate the molecular basis, microarray analysis was performed on iPS cells generated under high (Oct3/4-high and Sox2-low) and low (Oct3/4-low and Sox2-high) efficiency reprogramming conditions. Pathway analysis revealed that the G protein-coupled receptor (GPCR) pathway was up-regulated significantly under the high efficiency condition and treatment with the chemokine, C-C motif ligand 2, a member of the GPCR family, enhanced somatic cell reprogramming 12.3 times. Furthermore, data from the analysis of the signature gene expression profiles of mouse embryonic fibroblasts at 2 days after RTF infection revealed that the genetic modifier, Whsc1l1 (variant 1), also improved the efficiency of somatic cell reprogramming. Finally, comparison of the overall gene expression profiles between the high and low efficiency conditions will provide novel insights into mechanisms underlying somatic cell reprogramming.


Molecular and Cellular Biology | 2006

A CTX Family Cell Adhesion Molecule, JAM4, Is Expressed in Stem Cell and Progenitor Cell Populations of both Male Germ Cell and Hematopoietic Cell Lineages

Go Nagamatsu; Masako Ohmura; Takuo Mizukami; Isao Hamaguchi; Susumu Hirabayashi; Shosei Yoshida; Yutaka Hata; Toshio Suda; Kazuyuki Ohbo

ABSTRACT Stem cells are maintained in an undifferentiated state by interacting with a microenvironment known as the “niche,” which is comprised of various secreted and membrane proteins. Our goal was to identify niche molecules participating in stem cell-stem cell and/or stem cell-supporting cell interactions. Here, we isolated genes encoding secreted and membrane proteins from purified male germ stem cells using a signal sequence trap approach. Among the genes identified, we focused on the junctional adhesion molecule 4 (JAM4), an immunoglobulin type cell adhesion molecule. JAM4 protein was actually localized to the plasma membrane in male germ cells. JAM4 expression was downregulated as cells differentiated in both germ cell and hematopoietic cell lineages. To analyze function in vivo, we generated JAM4-deficient mice. Histological analysis of testes from homozygous nulls did not show obvious abnormalities, nor did liver and kidney tissues, both of which strongly express JAM4. The numbers of hematopoietic stem cells in bone marrow were indistinguishable between wild-type and mutant mice, as was male germ cell development. These results suggest that JAM4 is expressed in stem cells and progenitor cells but that other cell adhesion molecules may substitute for JAM4 function in JAM4-deficient mice both in male germ cell and hematopoietic lineages.


Biochemical and Biophysical Research Communications | 2013

Nucleostemin is indispensable for the maintenance and genetic stability of hematopoietic stem cells

Masayuki Yamashita; Eriko Nitta; Go Nagamatsu; Yoshiko Matsumoto Ikushima; Kentaro Hosokawa; Fumio Arai; Toshio Suda

Nucleostemin is a nucleolar protein known to play a variety of roles in cell-cycle progression, apoptosis inhibition, and DNA damage protection in embryonic stem cells and tissue stem cells. However, the role of nucleostemin in hematopoietic stem cells (HSCs) is yet to be determined. Here, we identified an indispensable role of nucleostemin in mouse HSCs. Depletion of nucleostemin using short hairpin RNA strikingly impaired the self-renewal activity of HSCs both in vitro and in vivo. Consistently, nucleostemin depletion triggered apoptosis rather than cell-cycle arrest in HSCs. Furthermore, DNA damage accumulated during cultivation upon depletion of nucleostemin. The impaired self-renewal activity of HSCs induced by nucleostemin depletion was partially rescued by p53 deficiency but not by p16(Ink4a) or p19(Arf) deficiency. Taken together, our study demonstrates that nucleostemin protects HSCs from DNA damage accumulation and is required for the maintenance of HSCs.


Biology of Reproduction | 2012

Tracing the Conversion Process from Primordial Germ Cells to Pluripotent Stem Cells in Mice

Go Nagamatsu; Takeo Kosaka; Shigeru Saito; Keiyo Takubo; Hideo Akiyama; Tetsuo Sudo; Katsuhisa Horimoto; Mototsugu Oya; Toshio Suda

ABSTRACT To understand mechanisms underlying acquisition of pluripotency, it is critical to identify cells that can be converted to pluripotent stem cells. For this purpose, we focused on unipotent primordial germ cells (PGCs), which can be reprogrammed into pluripotent embryonic germ (EG) cells under defined conditions. Treatment of PGCs with combinations of signaling inhibitors, including inhibitors of MAP2K (MEK), GSK3B (GSK-3beta), and TGFB (TGFbeta) type 1 receptors, induced cells to enter a pluripotent state at a high frequency (12.1%) by Day 10 of culture. When we employed fluorescence-activated cell sorting to monitor conversion of candidate cells to a pluripotent state, we observed a cell cycle shift to S phase, indicating enrichment of pluripotent cells, during the early phase of EG formation. Transcriptome analysis revealed that PGCs retained expression of some pluripotent stem cell-associated genes, such as Pou5f1 and Sox2, during EG cell formation. On the other hand, PGCs lost their germ lineage characteristics and acquired expression of pluripotent stem cell markers, such as Klf4 and Eras. The overall gene expression profiles revealed by this system provide novel insight into how pluripotency is acquired in germ-committed cells.

Collaboration


Dive into the Go Nagamatsu's collaboration.

Top Co-Authors

Avatar

Toshio Suda

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsuhisa Horimoto

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge