Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keiyo Takubo is active.

Publication


Featured researches published by Keiyo Takubo.


Cell | 2004

Tie2/Angiopoietin-1 Signaling Regulates Hematopoietic Stem Cell Quiescence in the Bone Marrow Niche

Fumio Arai; Atsushi Hirao; Masako Ohmura; Hidetaka Sato; Sahoko Matsuoka; Keiyo Takubo; Keisuke Ito; Gou Young Koh; Toshio Suda

The quiescent state is thought to be an indispensable property for the maintenance of hematopoietic stem cells (HSCs). Interaction of HSCs with their particular microenvironments, known as the stem cell niches, is critical for adult hematopoiesis in the bone marrow (BM). Here, we demonstrate that HSCs expressing the receptor tyrosine kinase Tie2 are quiescent and antiapoptotic, and comprise a side-population (SP) of HSCs, which adhere to osteoblasts (OBs) in the BM niche. The interaction of Tie2 with its ligand Angiopoietin-1 (Ang-1) induced cobblestone formation of HSCs in vitro and maintained in vivo long-term repopulating activity of HSCs. Furthermore, Ang-1 enhanced the ability of HSCs to become quiescent and induced adhesion to bone, resulting in protection of the HSC compartment from myelosuppressive stress. These data suggest that the Tie2/Ang-1 signaling pathway plays a critical role in the maintenance of HSCs in a quiescent state in the BM niche.


Nature Medicine | 2006

Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells

Keisuke Ito; Atsushi Hirao; Fumio Arai; Keiyo Takubo; Sahoko Matsuoka; Kana Miyamoto; Masako Ohmura; Kazuhito Naka; Kentaro Hosokawa; Yasuo Ikeda; Toshio Suda

Hematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood production for their lifetime. Appropriate control of HSC self-renewal is crucial for the maintenance of hematopoietic homeostasis. Here we show that activation of p38 MAPK in response to increasing levels of reactive oxygen species (ROS) limits the lifespan of HSCs in vivo. In Atm−/− mice, elevation of ROS levels induces HSC-specific phosphorylation of p38 MAPK accompanied by a defect in the maintenance of HSC quiescence. Inhibition of p38 MAPK rescued ROS-induced defects in HSC repopulating capacity and in the maintenance of HSC quiescence, indicating that the ROS–p38 MAPK pathway contributes to exhaustion of the stem cell population. Furthermore, prolonged treatment with an antioxidant or an inhibitor of p38 MAPK extended the lifespan of HSCs from wild-type mice in serial transplantation experiments. These data show that inactivation of p38 MAPK protects HSCs against loss of self-renewal capacity. Our characterization of molecular mechanisms that limit HSC lifespan may lead to beneficial therapies for human disease.


Nature | 2004

Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells

Keisuke Ito; Atsushi Hirao; Fumio Arai; Sahoko Matsuoka; Keiyo Takubo; Isao Hamaguchi; Kana Nomiyama; Kentaro Hosokawa; Kazuhiro Sakurada; Naomi Nakagata; Yasuo Ikeda; Tak W. Mak; Toshio Suda

The ‘ataxia telangiectasia mutated’ (Atm) gene maintains genomic stability by activating a key cell-cycle checkpoint in response to DNA damage, telomeric instability or oxidative stress. Mutational inactivation of the gene causes an autosomal recessive disorder, ataxia–telangiectasia, characterized by immunodeficiency, progressive cerebellar ataxia, oculocutaneous telangiectasia, defective spermatogenesis, premature ageing and a high incidence of lymphoma. Here we show that ATM has an essential function in the reconstitutive capacity of haematopoietic stem cells (HSCs) but is not as important for the proliferation or differentiation of progenitors, in a telomere-independent manner. Atm-/- mice older than 24 weeks showed progressive bone marrow failure resulting from a defect in HSC function that was associated with elevated reactive oxygen species. Treatment with anti-oxidative agents restored the reconstitutive capacity of Atm-/- HSCs, resulting in the prevention of bone marrow failure. Activation of the p16INK4a-retinoblastoma (Rb) gene product pathway in response to elevated reactive oxygen species led to the failure of Atm-/- HSCs. These results show that the self-renewal capacity of HSCs depends on ATM-mediated inhibition of oxidative stress.


Cell Stem Cell | 2007

Foxo3a Is Essential for Maintenance of the Hematopoietic Stem Cell Pool

Kana Miyamoto; Kiyomi Y. Araki; Kazuhito Naka; Fumio Arai; Keiyo Takubo; Satoshi Yamazaki; Sahoko Matsuoka; Takeshi Miyamoto; Keisuke Ito; Masako Ohmura; Chen Chen; Kentaro Hosokawa; Hiromitsu Nakauchi; Keiko Nakayama; Keiichi I. Nakayama; Mine Harada; Noboru Motoyama; Toshio Suda; Atsushi Hirao

Hematopoietic stem cells (HSCs) are maintained in an undifferentiated quiescent state within a bone marrow niche. Here we show that Foxo3a, a forkhead transcription factor that acts downstream of the PTEN/PI3K/Akt pathway, is critical for HSC self-renewal. We generated gene-targeted Foxo3a(-/-) mice and showed that, although the proliferation and differentiation of Foxo3a(-/-) hematopoietic progenitors were normal, the number of colony-forming cells present in long-term cocultures of Foxo3a(-/-) bone marrow cells and stromal cells was reduced. The ability of Foxo3a(-/-) HSCs to support long-term reconstitution of hematopoiesis in a competitive transplantation assay was also impaired. Foxo3a(-/-) HSCs also showed increased phosphorylation of p38MAPK, an elevation of ROS, defective maintenance of quiescence, and heightened sensitivity to cell-cycle-specific myelotoxic injury. Finally, HSC frequencies were significantly decreased in aged Foxo3a(-/-) mice compared to the littermate controls. Our results demonstrate that Foxo3a plays a pivotal role in maintaining the HSC pool.


Cell Stem Cell | 2010

Regulation of the HIF-1α Level Is Essential for Hematopoietic Stem Cells

Keiyo Takubo; Nobuhito Goda; Wakako Yamada; Hirono Iriuchishima; Eiji Ikeda; Yoshiaki Kubota; Haruko Shima; Randall S. Johnson; Atsushi Hirao; Makoto Suematsu; Toshio Suda

Hematopoietic stem cells (HSCs) are sustained in a specific microenvironment known as the stem cell niche. Mammalian HSCs are kept quiescent in the endosteal niche, a hypoxic zone of the bone marrow (BM). In this study, we show that normal HSCs maintain intracellular hypoxia and stabilize hypoxia-inducible factor-1alpha (HIF-1alpha) protein. In HIF-1alpha-deficient mice, the HSCs lost their cell cycle quiescence and HSC numbers decreased during various stress settings including bone marrow transplantation, myelosuppression, or aging, in a p16(Ink4a)/p19(Arf)-dependent manner. Overstabilization of HIF-1alpha by biallelic loss of an E3 ubiquitin ligase for HIF-1alpha (VHL) induced cell cycle quiescence in HSCs and their progenitors but resulted in an impairment in transplantation capacity. In contrast, monoallelic loss of VHL induced cell cycle quiescence and improved BM engraftment during bone marrow transplantation. These data indicate that HSCs maintain cell cycle quiescence through the precise regulation of HIF-1alpha levels.


Cell Stem Cell | 2007

Thrombopoietin/MPL Signaling Regulates Hematopoietic Stem Cell Quiescence and Interaction with the Osteoblastic Niche

Hiroki Yoshihara; Fumio Arai; Kentaro Hosokawa; Tetsuya Hagiwara; Keiyo Takubo; Yuka Nakamura; Yumiko Gomei; Hiroko Iwasaki; Sahoko Matsuoka; Kana Miyamoto; Hiroshi Miyazaki; Takao Takahashi; Toshio Suda

Maintenance of hematopoietic stem cells (HSCs) depends on interaction with their niche. Here we show that the long-term (LT)-HSCs expressing the thrombopoietin (THPO) receptor, MPL, are a quiescent population in adult bone marrow (BM) and are closely associated with THPO-producing osteoblastic cells. THPO/MPL signaling upregulated beta1-integrin and cyclin-dependent kinase inhibitors in HSCs. Furthermore, inhibition and stimulation of THPO/MPL pathway by treatments with anti-MPL neutralizing antibody, AMM2, and with THPO showed reciprocal regulation of quiescence of LT-HSC. AMM2 treatment reduced the number of quiescent LT-HSCs and allowed exogenous HSC engraftment without irradiation. By contrast, exogenous THPO transiently increased quiescent HSC population and subsequently induced HSC proliferation in vivo. Altogether, these observations suggest that THPO/MPL signaling plays a critical role of LT-HSC regulation in the osteoblastic niche.


Cell Stem Cell | 2011

Metabolic Regulation of Hematopoietic Stem Cells in the Hypoxic Niche

Toshio Suda; Keiyo Takubo; Gregg L. Semenza

Tissue homeostasis over the life of an organism relies on both self-renewal and multipotent differentiation of stem cells. Hematopoietic stem cells (HSCs) reside in a hypoxic bone marrow environment, and their metabolic status is distinct from that of their differentiated progeny. HSCs generate energy mainly via anaerobic metabolism by maintaining a high rate of glycolysis. This metabolic balance promotes HSC maintenance by limiting the production of reactive oxygen species, but leaves HSCs susceptible to changes in redox status. In this review, we discuss the importance of oxygen homeostasis and energy metabolism for maintenance of HSC function and long-term self-renewal.


Journal of Experimental Medicine | 2007

Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification

Kozo Morita; Takeshi Miyamoto; Nobuyuki Fujita; Yoshiaki Kubota; Keisuke Ito; Keiyo Takubo; Kana Miyamoto; Ken Ninomiya; Toru Suzuki; Ryotaro Iwasaki; Mitsuru Yagi; Hironari Takaishi; Yoshiaki Toyama; Toshio Suda

Chondrocyte hypertrophy during endochondral ossification is a well-controlled process in which proliferating chondrocytes stop proliferating and differentiate into hypertrophic chondrocytes, which then undergo apoptosis. Chondrocyte hypertrophy induces angiogenesis and mineralization. This step is crucial for the longitudinal growth and development of long bones, but what triggers the process is unknown. Reactive oxygen species (ROS) have been implicated in cellular damage; however, the physiological role of ROS in chondrogenesis is not well characterized. We demonstrate that increasing ROS levels induce chondrocyte hypertrophy. Elevated ROS levels are detected in hypertrophic chondrocytes. In vivo and in vitro treatment with N-acetyl cysteine, which enhances endogenous antioxidant levels and protects cells from oxidative stress, inhibits chondrocyte hypertrophy. In ataxia telangiectasia mutated (Atm)–deficient (Atm−/−) mice, ROS levels were elevated in chondrocytes of growth plates, accompanied by a proliferation defect and stimulation of chondrocyte hypertrophy. Decreased proliferation and excessive hypertrophy in Atm−/− mice were also rescued by antioxidant treatment. These findings indicate that ROS levels regulate inhibition of proliferation and modulate initiation of the hypertrophic changes in chondrocytes.


Journal of Immunology | 2007

Regulation of Reactive Oxygen Species by Atm Is Essential for Proper Response to DNA Double-Strand Breaks in Lymphocytes

Keisuke Ito; Keiyo Takubo; Fumio Arai; Hitoshi Satoh; Sahoko Matsuoka; Masako Ohmura; Kazuhito Naka; Masaki Azuma; Kana Miyamoto; Kentaro Hosokawa; Yasuo Ikeda; Tak W. Mak; Toshio Suda; Atsushi Hirao

The ataxia telangiectasia-mutated (ATM) gene plays a pivotal role in the maintenance of genomic stability. Although it has been recently shown that antioxidative agents inhibited lymphomagenesis in Atm−/− mice, the mechanisms remain unclear. In this study, we intensively investigated the roles of reactive oxygen species (ROS) in phenotypes of Atm−/− mice. Reduction of ROS by the antioxidant N-acetyl-l-cysteine (NAC) prevented the emergence of senescent phenotypes in Atm−/− mouse embryonic fibroblasts, hypersensitivity to total body irradiation, and thymic lymphomagenesis in Atm−/− mice. To understand the mechanisms for prevention of lymphomagenesis, we analyzed development of pretumor lymphocytes in Atm−/− mice. Impairment of Ig class switch recombination seen in Atm−/− mice was mitigated by NAC, indicating that ROS elevation leads to abnormal response to programmed double-strand breaks in vivo. Significantly, in vivo administration of NAC to Atm−/− mice restored normal T cell development and inhibited aberrant V(D)J recombination. We conclude that Atm-mediated ROS regulation is essential for proper DNA recombination, preventing immunodeficiency, and lymphomagenesis.


Cell Stem Cell | 2008

Stem cell defects in ATM-deficient undifferentiated spermatogonia through DNA damage-induced cell-cycle arrest.

Keiyo Takubo; Masako Ohmura; Masaki Azuma; Go Nagamatsu; Wakako Yamada; Fumio Arai; Atsushi Hirao; Toshio Suda

Mammalian spermatogenesis is maintained by stem cell capacity within undifferentiated spermatogonial subpopulation. Here, using a combination of surface markers, we describe a purification method for undifferentiated spermatogonia. Flow cytometric analysis revealed that this population is composed of Plzf-positive cells and exhibits quiescence and the side population phenotype, fulfilling general stem cell criteria. We then applied this method to analyze undifferentiated spermatogonia and stem cell activity of Atm(-/-) mice. Atm(-/-) testis shows progressive depletion of undifferentiated spermatogonia accompanied by cell-cycle arrest. In Atm(-/-) undifferentiated spermatogonia, a self-renewal defect was observed in vitro and in vivo. Accumulation of DNA damage and activation of the p19(Arf)-p53-p21(Cip1/Waf1) pathway were observed in Atm(-/-) undifferentiated spermatogonia. Moreover, suppression of p21(Cip1/Waf1) in an Atm(-/-) background restored transplantation ability of undifferentiated spermatogonia, indicating that ATM plays an essential role in maintenance of undifferentiated spermatogonia and their stem cell capacity by suppressing DNA damage-induced cell-cycle arrest.

Collaboration


Dive into the Keiyo Takubo's collaboration.

Top Co-Authors

Avatar

Toshio Suda

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keisuke Ito

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge