Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gonglan Ye is active.

Publication


Featured researches published by Gonglan Ye.


Nature Materials | 2014

Vertical and in-plane heterostructures from WS2/MoS2 monolayers

Yongji Gong; Junhao Lin; Xingli Wang; Gang Shi; Sidong Lei; Zhong Lin; Xiaolong Zou; Gonglan Ye; Robert Vajtai; Boris I. Yakobson; Humberto Terrones; Mauricio Terrones; Beng Kang Tay; Jun Lou; Sokrates T. Pantelides; Zheng Liu; Wu Zhou; Pulickel M. Ajayan

Layer-by-layer stacking or lateral interfacing of atomic monolayers has opened up unprecedented opportunities to engineer two-dimensional heteromaterials. Fabrication of such artificial heterostructures with atomically clean and sharp interfaces, however, is challenging. Here, we report a one-step growth strategy for the creation of high-quality vertically stacked as well as in-plane interconnected heterostructures of WS2/MoS2 via control of the growth temperature. Vertically stacked bilayers with WS2 epitaxially grown on top of the MoS2 monolayer are formed with preferred stacking order at high temperature. A strong interlayer excitonic transition is observed due to the type II band alignment and to the clean interface of these bilayers. Vapour growth at low temperature, on the other hand, leads to lateral epitaxy of WS2 on MoS2 edges, creating seamless and atomically sharp in-plane heterostructures that generate strong localized photoluminescence enhancement and intrinsic p-n junctions. The fabrication of heterostructures from monolayers, using simple and scalable growth, paves the way for the creation of unprecedented two-dimensional materials with exciting properties.


ACS Nano | 2014

Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2

Xingli Wang; Yongji Gong; Gang Shi; Wai Leong Chow; Kunttal Keyshar; Gonglan Ye; Robert Vajtai; Jun Lou; Zheng Liu; Emilie Ringe; Beng Kang Tay; Pulickel M. Ajayan

Recently, two-dimensional layers of transition metal dichalcogenides, such as MoS2, WS2, MoSe2, and WSe2, have attracted much attention for their potential applications in electronic and optoelectronic devices. The selenide analogues of MoS2 and WS2 have smaller band gaps and higher electron mobilities, making them more appropriate for practical devices. However, reports on scalable growth of high quality transition metal diselenide layers and studies of their properties have been limited. Here, we demonstrate the chemical vapor deposition (CVD) growth of uniform MoSe2 monolayers under ambient pressure, resulting in large single crystalline islands. The photoluminescence intensity and peak position indicates a direct band gap of 1.5 eV for the MoSe2 monolayers. A back-gated field effect transistor based on MoSe2 monolayer shows n-type channel behavior with average mobility of 50 cm(2) V(-1) s(-1), a value much higher than the 4-20 cm(2) V(-1) s(-1) reported for vapor phase grown MoS2.


Nature Communications | 2015

Atomic cobalt on nitrogen-doped graphene for hydrogen generation

Huilong Fei; J. Dong; M. Josefina Arellano-Jiménez; Gonglan Ye; Nam Dong Kim; Errol L. G. Samuel; Zhiwei Peng; Zhuan Zhu; Fan Qin; Jiming Bao; Miguel José Yacamán; Pulickel M. Ajayan; Dongliang Chen; James M. Tour

Reduction of water to hydrogen through electrocatalysis holds great promise for clean energy, but its large-scale application relies on the development of inexpensive and efficient catalysts to replace precious platinum catalysts. Here we report an electrocatalyst for hydrogen generation based on very small amounts of cobalt dispersed as individual atoms on nitrogen-doped graphene. This catalyst is robust and highly active in aqueous media with very low overpotentials (30 mV). A variety of analytical techniques and electrochemical measurements suggest that the catalytically active sites are associated with the metal centres coordinated to nitrogen. This unusual atomic constitution of supported metals is suggestive of a new approach to preparing extremely efficient single-atom catalysts.


Nano Letters | 2016

Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction

Gonglan Ye; Yongji Gong; Junhao Lin; Bo Li; Yongmin He; Sokrates T. Pantelides; Wu Zhou; Robert Vajtai; Pulickel M. Ajayan

MoS2 is a promising and low-cost material for electrochemical hydrogen production due to its high activity and stability during the reaction. However, the efficiency of hydrogen production is limited by the amount of active sites, for example, edges, in MoS2. Here, we demonstrate that oxygen plasma exposure and hydrogen treatment on pristine monolayer MoS2 could introduce more active sites via the formation of defects within the monolayer, leading to a high density of exposed edges and a significant improvement of the hydrogen evolution activity. These as-fabricated defects are characterized at the scale from macroscopic continuum to discrete atoms. Our work represents a facile method to increase the hydrogen production in electrochemical reaction of MoS2 via defect engineering, and helps to understand the catalytic properties of MoS2.


ACS Nano | 2014

Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction

Huilong Fei; Ruquan Ye; Gonglan Ye; Yongji Gong; Zhiwei Peng; Xiujun Fan; Errol L. G. Samuel; Pulickel M. Ajayan; James M. Tour

The scarcity and high cost of platinum-based electrocatalysts for the oxygen reduction reaction (ORR) has limited the commercial and scalable use of fuel cells. Heteroatom-doped nanocarbon materials have been demonstrated to be efficient alternative catalysts for ORR. Here, graphene quantum dots, synthesized from inexpensive and earth-abundant anthracite coal, were self-assembled on graphene by hydrothermal treatment to form hybrid nanoplatelets that were then codoped with nitrogen and boron by high-temperature annealing. This hybrid material combined the advantages of both components, such as abundant edges and doping sites, high electrical conductivity, and high surface area, which makes the resulting materials excellent oxygen reduction electrocatalysts with activity even higher than that of commercial Pt/C in alkaline media.


Nano Letters | 2015

Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures

Yongji Gong; Sidong Lei; Gonglan Ye; Bo Li; Yongmin He; Kunttal Keyshar; Xiang Zhang; Qizhong Wang; Jun Lou; Zheng Liu; Robert Vajtai; Wu Zhou; Pulickel M. Ajayan

Two dimensional (2D) materials have attracted great attention due to their unique properties and atomic thickness. Although various 2D materials have been successfully synthesized with different optical and electrical properties, a strategy for fabricating 2D heterostructures must be developed in order to construct more complicated devices for practical applications. Here we demonstrate for the first time a two-step chemical vapor deposition (CVD) method for growing transition-metal dichalcogenide (TMD) heterostructures, where MoSe2 was synthesized first and followed by an epitaxial growth of WSe2 on the edge and on the top surface of MoSe2. Compared to previously reported one-step growth methods, this two-step growth has the capability of spatial and size control of each 2D component, leading to much larger (up to 169 μm) heterostructure size, and cross-contamination can be effectively minimized. Furthermore, this two-step growth produces well-defined 2H and 3R stacking in the WSe2/MoSe2 bilayer regions and much sharper in-plane interfaces than the previously reported MoSe2/WSe2 heterojunctions obtained from one-step growth methods. The resultant heterostructures with WSe2/MoSe2 bilayer and the exposed MoSe2 monolayer display rectification characteristics of a p-n junction, as revealed by optoelectronic tests, and an internal quantum efficiency of 91% when functioning as a photodetector. A photovoltaic effect without any external gates was observed, showing incident photon to converted electron (IPCE) efficiencies of approximately 0.12%, providing application potential in electronics and energy harvesting.


Advanced Materials | 2015

Chemical Vapor Deposition of Monolayer Rhenium Disulfide (ReS2)

Kunttal Keyshar; Yongji Gong; Gonglan Ye; Gustavo Brunetto; Wu Zhou; Daniel P. Cole; Ken Hackenberg; Yongmin He; Leonardo D. Machado; Mohamad A. Kabbani; Amelia H. C. Hart; Bo Li; Douglas S. Galvao; Antony George; Robert Vajtai; Chandra Sekhar Tiwary; Pulickel M. Ajayan

The direct synthesis of monolayer and multilayer ReS2 by chemical vapor deposition at a low temperature of 450 °C is reported. Detailed characterization of this material is performed using various spectroscopy and microscopy methods. Furthermore initial field-effect transistor characteristics are evaluated, which highlight the potential in being used as an n-type semiconductor.


ACS Applied Materials & Interfaces | 2015

Carbon Nitrogen Nanotubes as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions

Ram Manohar Yadav; Jingjie Wu; Raji Kochandra; Lulu Ma; Chandra Sekhar Tiwary; Liehui Ge; Gonglan Ye; Robert Vajtai; Jun Lou; Pulickel M. Ajayan

Oxygen reduction and evolution reactions are essential for broad range of renewable energy technologies such as fuel cells, metal-air batteries and hydrogen production through water splitting, therefore, tremendous effort has been taken to develop excellent catalysts for these reactions. However, the development of cost-effective and efficient bifunctional catalysts for both reactions still remained a grand challenge. Herein, we report the electrocatalytic investigations of bamboo-shaped carbon nitrogen nanotubes (CNNTs) having different diameter distribution synthesized by liquid chemical vapor deposition technique using different nitrogen containing precursors. These CNNTs are found to be efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. The electrocatalytic activity strongly depends on the nanotube diameter as well as nitrogen functionality type. The higher diameter CNNTs are more favorable for these reactions. The increase in nanotube diameter itself enhances the catalytic activity by lowering the oxygen adsorption energy, better conductivity, and further facilitates the reaction by increasing the percentage of catalytically active nitrogen moieties in CNNTs.


ACS Applied Materials & Interfaces | 2014

CoMoO4 Nanoparticles Anchored on Reduced Graphene Oxide Nanocomposites as Anodes for Long-Life Lithium-Ion Batteries

Jianyu Yao; Yongji Gong; Shubin Yang; Peng Xiao; Yunhuai Zhang; Kunttal Keyshar; Gonglan Ye; Sehmus Ozden; Robert Vajtai; Pulickel M. Ajayan

A self-assembled CoMoO4 nanoparticles/reduced graphene oxide (CoMoO4NP/rGO), was prepared by a hydrothermal method to grow 3-5 nm sized CoMoO4 particles on reduced graphene oxide sheets and used as an anode material for lithium-ion batteries. The specific capacity of CoMoO4NP/rGO anode can reach up to 920 mAh g(-1) at a current rate of 74 mA g(-1) in the voltage range between 3.0 and 0.001 V, which is close to the theoretical capacity of CoMoO4 (980 mAh g(-1)). The fabricated half cells also show good rate capability and impressive cycling stability with 8.7% capacity loss after 600 cycles under a high current density of 740 mA g(-1). The superior electrochemical performance of the synthesized CoMoO4NP/rGO is attributed to the synergetic chemical coupling effects between the conductive graphene networks and the high lithium-ion storage capability of CoMoO4 nanoparticles.


ACS Nano | 2015

Tellurium-Assisted Low-Temperature Synthesis of MoS2 and WS2 Monolayers.

Yongji Gong; Zhong Lin; Gonglan Ye; Gang Shi; Simin Feng; Yu Lei; Ana Laura Elías; Nestor Perea-Lopez; Robert Vajtai; Humberto Terrones; Zheng Liu; Mauricio Terrones; Pulickel M. Ajayan

Chemical vapor deposition (CVD) is a scalable method able to synthesize MoS2 and WS2 monolayers. In this work, we reduced the synthesis temperature by 200 °C only by introducing tellurium (Te) into the CVD process. The as-synthesized MoS2 and WS2 monolayers show high phase purity and crystallinity. The optical and electrical performance of these materials is comparable to those synthesized at higher temperatures. We believe this work will accelerate the industrial synthesis of these semiconducting monolayers.

Collaboration


Dive into the Gonglan Ye's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wu Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yongmin He

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge