Gonzalo Moratorio
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gonzalo Moratorio.
Infection, Genetics and Evolution | 2013
Gonzalo Moratorio; Andrés Iriarte; Pilar Moreno; Héctor Musto; Juan Cristina
West Nile virus (WNV) is a member of the family Flaviviridae and its genome consists of an 11-kb single-stranded, positive-sense RNA. WNV is maintained in an enzootic cycle between mosquitoes and birds, but can also infect and cause disease in horses and humans, which serve as incidental dead-end hosts. Understanding the extent and causes of biases in codon usage is essential to the comprehension of viral evolution. In this study, we performed a comprehensive analysis of 449 WNV strains, for which complete genome sequences are available. Effective number of codons (ENC) indicates that the overall codon usage among WNV strains is only slightly biased. Codon adaptation index (CAI) values found for WNV genes are different from the CAI values found for human genes. The relative synonymous codon usage among WNV strains isolated from birds, equines, humans and mosquitoes are roughly similar and are influenced by the relative dinucleotide frequencies. Taking together, the results of this work suggest that WNV genomic biases are the result of the evolution of genome composition, the need to escape the antiviral cell responses and a dynamic process of mutation and selection to re-adapt its codon usage to different environments.
PLOS Pathogens | 2015
Antonio V. Bordería; Ofer Isakov; Gonzalo Moratorio; Rasmus Henningsson; Sonia Agüera-González; Lindsey J. Organtini; Nina F. Gnädig; Hervé Blanc; Andrés Alcover; Susan Hafenstein; Magnus Fontes; Noam Shomron; Marco Vignuzzi
Understanding how a pathogen colonizes and adapts to a new host environment is a primary aim in studying emerging infectious diseases. Adaptive mutations arise among the thousands of variants generated during RNA virus infection, and identifying these variants will shed light onto how changes in tropism and species jumps can occur. Here, we adapted Coxsackie virus B3 to a highly permissive and less permissive environment. Using deep sequencing and bioinformatics, we identified a multi-step adaptive process to adaptation involving residues in the receptor footprints that correlated with receptor availability and with increase in virus fitness in an environment-specific manner. We show that adaptation occurs by selection of a dominant mutation followed by group selection of minority variants that together, confer the fitness increase observed in the population, rather than selection of a single dominant genotype.
Archives of Virology | 2010
Gonzalo Moratorio; Gonzalo Obal; Ana Dubra; Agustín Correa; Sergio Bianchi; Alejandro Buschiazzo; Juan Cristina; Otto Pritsch
Bovine leukaemia virus (BLV) is an oncogenic member of the genus Deltaretrovirus of the family Retroviridae. Recent studies revealed that BLV strains can be classified into six different genotypes and raised the possibility that another genotype may exist. In order to gain insight into the degree of genetic variability of BLV strains circulating in the South American region, a phylogenetic analysis was performed using gp51 env gene sequences. The results of these studies revealed the presence of seven BLV genotypes in this geographic region and the suitability of partial gp51 env gene sequences for phylogenetic inference. A significant number of amino acid substitutions found in BLV strains isolated in South America map to the second neutralization domain of gp51. A 3D molecular model of BLV gp51 revealed that these substitutions are located on the surface of the molecule. This may provide a selective advantage to overcome immune host neutralization.
World Journal of Hepatology | 2015
Natalia Echeverría; Gonzalo Moratorio; Juan Cristina; Pilar Moreno
Hepatitis C virus (HCV) has infected over 170 million people worldwide and creates a huge disease burden due to chronic, progressive liver disease. HCV is a single-stranded, positive sense, RNA virus, member of the Flaviviridae family. The high error rate of RNA-dependent RNA polymerase and the pressure exerted by the host immune system, has driven the evolution of HCV into 7 different genotypes and more than 67 subtypes. HCV evolves by means of different mechanisms of genetic variation. On the one hand, its high mutation rates generate the production of a large number of different but closely related viral variants during infection, usually referred to as a quasispecies. The great quasispecies variability of HCV has also therapeutic implications since the continuous generation and selection of resistant or fitter variants within the quasispecies spectrum might allow viruses to escape control by antiviral drugs. On the other hand HCV exploits recombination to ensure its survival. This enormous viral diversity together with some host factors has made it difficult to control viral dispersal. Current treatment options involve pegylated interferon-α and ribavirin as dual therapy or in combination with a direct-acting antiviral drug, depending on the country. Despite all the efforts put into antiviral therapy studies, eradication of the virus or the development of a preventive vaccine has been unsuccessful so far. This review focuses on current available data reported to date on the genetic mechanisms driving the molecular evolution of HCV populations and its relation with the antiviral therapies designed to control HCV infection.
Virology Journal | 2009
Pilar Moreno; Macarena Alvarez; Lilia López; Gonzalo Moratorio; Didier Casane; Matías Castells; Silvia Castro; Juan Cristina; Rodney Colina
Background/AimHepatitis C virus (HCV) infection is an important cause of morbidity and mortality in patients affected by hereditary bleeding disorders. HCV, as others RNA virus, exploit all possible mechanisms of genetic variation to ensure their survival, such as recombination and mutation. In order to gain insight into the genetic variability of HCV virus strains circulating in hemophiliac patients, we have performed a phylogenetic analysis of HCV strains isolated from 10 patients with this kind of pathology.MethodsPutative recombinant sequence was identified with the use of GARD program. Statistical support for the presence of a recombination event was done by the use of LARD program.ResultsA new intragenotypic recombinant strain (1b/1a) was detected in 1 out of the 10 hemophiliac patient studied. The recombination event was located at position 387 of the HCV genome (relative to strain AF009606, sub-type 1a) corresponding to the core gene region.ConclusionAlthough recombination may not appear to be common among natural populations of HCV it should be considered as a possible mechanism for generating genetic diversity in hemophiliacs patients.
Virology Journal | 2012
Natalia Goñi; Andrés Iriarte; Victoria Comas; Martín Soñora; Pilar Moreno; Gonzalo Moratorio; Héctor Musto; Juan Cristina
BackgroundInfluenza A virus (IAV) is a member of the family Orthomyxoviridae and contains eight segments of a single-stranded RNA genome with negative polarity. The first influenza pandemic of this century was declared in April of 2009, with the emergence of a novel H1N1 IAV strain (H1N1pdm) in Mexico and USA. Understanding the extent and causes of biases in codon usage is essential to the understanding of viral evolution. A comprehensive study to investigate the effect of selection pressure imposed by the human host on the codon usage of an emerging, pandemic IAV strain and the trends in viral codon usage involved over the pandemic time period is much needed.ResultsWe performed a comprehensive codon usage analysis of 310 IAV strains from the pandemic of 2009. Highly biased codon usage for Ala, Arg, Pro, Thr and Ser were found. Codon usage is strongly influenced by underlying biases in base composition. When correspondence analysis (COA) on relative synonymous codon usage (RSCU) is applied, the distribution of IAV ORFs in the plane defined by the first two major dimensional factors showed that different strains are located at different places, suggesting that IAV codon usage also reflects an evolutionary process.ConclusionsA general association between codon usage bias, base composition and poor adaptation of the virus to the respective host tRNA pool, suggests that mutational pressure is the main force shaping H1N1 pdm IAV codon usage. A dynamic process is observed in the variation of codon usage of the strains enrolled in these studies. These results suggest a balance of mutational bias and natural selection, which allow the virus to explore and re-adapt its codon usage to different environments. Recoding of IAV taking into account codon bias, base composition and adaptation to host tRNA may provide important clues to develop new and appropriate vaccines.
Virology Journal | 2010
Alvaro Ramírez; Alvaro Fajardo; Zoila Moros; Marlene Gerder; Gerson Caraballo; Daría Elena Camacho; Guillermo Comach; Víctor Alarcón; Julio Zambrano; Rosa Hernandez; Gonzalo Moratorio; Juan Cristina; Ferdinando Liprandi
BackgroundDengue virus (DENV) is a member of the genus Flavivirus of the family Flaviviridae. DENV are comprised of four distinct serotypes (DENV-1 through DENV-4) and each serotype can be divided in different genotypes. Currently, there is a dramatic emergence of DENV-3 genotype III in Latin America. Nevertheless, we still have an incomplete understanding of the evolutionary forces underlying the evolution of this genotype in this region of the world. In order to gain insight into the degree of genetic variability, rates and patterns of evolution of this genotype in Venezuela and the South American region, phylogenetic analysis, based on a large number (n = 119) of envelope gene sequences from DENV-3 genotype III strains isolated in Venezuela from 2001 to 2008, were performed.ResultsPhylogenetic analysis revealed an in situ evolution of DENV-3 genotype III following its introduction in the Latin American region, where three different genetic clusters (A to C) can be observed among the DENV-3 genotype III strains circulating in this region. Bayesian coalescent inference analyses revealed an evolutionary rate of 8.48 × 10-4 substitutions/site/year (s/s/y) for strains of cluster A, composed entirely of strains isolated in Venezuela. Amino acid substitution at position 329 of domain III of the E protein (A→V) was found in almost all E proteins from Cluster A strains.ConclusionsA significant evolutionary change between DENV-3 genotype III strains that circulated in the initial years of the introduction in the continent and strains isolated in the Latin American region in recent years was observed. The presence of DENV-3 genotype III strains belonging to different clusters was observed in Venezuela, revealing several introduction events into this country. The evolutionary rate found for Cluster A strains circulating in Venezuela is similar to the others previously established for this genotype in other regions of the world. This suggests a lack of correlation among DENV genotype III substitution rate and ecological pattern of virus spread.
Virus Research | 2015
Juan Cristina; Pilar Moreno; Gonzalo Moratorio; Héctor Musto
Ebola virus (EBOV) is a member of the family Filoviridae and its genome consists of a 19-kb, single-stranded, negative sense RNA. EBOV is subdivided into five distinct species with different pathogenicities, being Zaire ebolavirus (ZEBOV) the most lethal species. The interplay of codon usage among viruses and their hosts is expected to affect overall viral survival, fitness, evasion from hosts immune system and evolution. In the present study, we performed comprehensive analyses of codon usage and composition of ZEBOV. Effective number of codons (ENC) indicates that the overall codon usage among ZEBOV strains is slightly biased. Different codon preferences in ZEBOV genes in relation to codon usage of human genes were found. Highly preferred codons are all A-ending triplets, which strongly suggests that mutational bias is a main force shaping codon usage in ZEBOV. Dinucleotide composition also plays a role in the overall pattern of ZEBOV codon usage. ZEBOV does not seem to use the most abundant tRNAs present in the human cells for most of their preferred codons.
Journal of Clinical Virology | 2010
Luis Fernando López Tort; Eduardo de Mello Volotão; Marcos César Lima de Mendonça; Marcelle Figueira Marques da Silva; Alessandra A. Siqueira; Rosane Maria Santos de Assis; Gonzalo Moratorio; Juan Cristina; José Paulo Gagliardi Leite
BACKGROUND Group A rotavirus (RV-A) genotype P[8]G9 has emerged as one of the leading causes of gastroenteritis in children worldwide and currently is recognized as one of the five most common genotypes detected in humans. High intragenotype diversity in G9 RV-A has been observed, and nowadays, based on the genetic variability of the VP7 gene, six different phylogenetic lineages and eleven sublineages were described. OBJECTIVES To study the degree of genetic variation and evolution of Brazilian P[8]G9 RV-A strains. STUDY DESIGN Phylogenetic analysis of 19 P[8]G9 RV-A strains isolated from 2004 to 2007 in five different Brazilian states was conducted using the NSP1, NSP3, NSP5, VP4 and VP7 genes. For the VP4 and VP7 genes, 3D protein structure predictions were generated to analyze the spatial distribution of amino acid substitutions observed in Brazilian strains. RESULTS Based on the phylogenetic analyses, all Brazilian strains clustered within lineage G9-III and P[8]-3 for VP7 and VP4, respectively, and were classified as genotype A1, T1 and H1 for the NSP1, NSP3 and NSP5 genes, respectively. Interestingly, all the strains isolated in Acre State (Northern Brazil) formed a closely related cluster clearly separated from the other Brazilian and prototype strains with regard to the five genes studied. Unique amino acid substitutions were observed in Acre strains in comparison with the prototype and Brazilian strains. CONCLUSION Inclusion of Acre strains in the phylogenetic analysis revealed the presence of a novel genetic variant and demonstrated a diversification of P[8]G9 rotaviruses in Brazil.
PLOS ONE | 2010
Maria Z. Sulbarán; Federico A. Di Lello; Yoneira Sulbarán; Clarisa Cosson; Carmen Luisa Loureiro; Héctor R. Rangel; Jean F. Cantaloube; Rodolfo Campos; Gonzalo Moratorio; Juan Cristina; Flor H. Pujol
Background The subtype diversity of the hepatitis C virus (HCV) genotypes is unknown in Venezuela. Methodology/Principal Findings Partial sequencing of the NS5B region was performed in 310 isolates circulating in patients from 1995 to 2007. In the samples collected between 2005 and 2007, HCV genotype 1 (G1) was the most common genotype (63%), composed as expected of mainly G1a and G1b. G2 was the second most common genotype (33%), being G2a almost absent and G2j the most frequent subtype. Sequence analysis of the core region confirmed the subtype assignment performed within the NS5b region in 63 isolates. The complete genome sequence of G2j was obtained. G2j has been described in France, Canada and Burkina Fasso, but it was not found in Martinique, where several subtypes of G2 circulate in the general population. Bayesian coalescence analysis indicated a most recent common ancestor (MRCA) of G2j around 1785, before the introduction of G1b (1869) and G1a (1922). While HCV G1a and G1b experienced a growth reduction since 1990, coincident with the time when blood testing was implemented in Venezuela, HCV G2j did not seem to reach growth equilibrium during this period. Conclusions/Significance Assuming the introduction of G2j from Africa during the slave trade, the high frequency of G2j found in Venezuela could suggest: 1- the introduction of African ethnic groups different from the ones introduced to Martinique or 2- the occurrence of a founder effect. This study represents an in-depth analysis of the subtype diversity of HCV in Venezuela, which is still unexplored in the Americas and deserves further studies.