Gonzalo Obal
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gonzalo Obal.
Molecular Microbiology | 2008
Helen M. O'Hare; Rosario Durán; Carlos Cerveñansky; Marco Bellinzoni; Anne Marie Wehenkel; Otto Pritsch; Gonzalo Obal; Jens Baumgartner; Jérôme Vialaret; Kai Johnsson; Pedro M. Alzari
Protein kinase G of Mycobacterium tuberculosis has been implicated in virulence and in regulation of glutamate metabolism. Here we show that this kinase undergoes a pattern of autophosphorylation that is distinct from that of other M. tuberculosis protein kinases characterized to date and we identify GarA as a substrate for phosphorylation by PknG. Autophosphorylation of PknG has little effect on kinase activity but promotes binding to GarA, an interaction that is also detected in living mycobacteria. PknG phosphorylates GarA at threonine 21, adjacent to the residue phosphorylated by PknB (T22), and these two phosphorylation events are mutually exclusive. Like the homologue OdhI from Corynebacterium glutamicum, the unphosphorylated form of GarA is shown to inhibit α‐ketoglutarate decarboxylase in the TCA cycle. Additionally GarA is found to bind and modulate the activity of a large NAD+‐specific glutamate dehydrogenase with an unusually low affinity for glutamate. Previous reports of a defect in glutamate metabolism caused by pknG deletion may thus be explained by the effect of unphosphorylated GarA on these two enzyme activities, which may also contribute to the attenuation of virulence.
Inorganic Chemistry | 2010
Andres Binolfi; Esaú E. Rodriguez; Daniela Valensin; Nicola D'Amelio; Emiliano Ippoliti; Gonzalo Obal; Rosario Durán; Alessandra Magistrato; Otto Pritsch; Markus Zweckstetter; Gianni Valensin; Paolo Carloni; Liliana Quintanar; Christian Griesinger; Claudio O. Fernández
The aggregation of alpha-synuclein (AS) is a critical step in the etiology of Parkinsons disease (PD). A central, unresolved question in the pathophysiology of PD relates to the role of AS-metal interactions in amyloid fibril formation and neurodegeneration. Our previous works established a hierarchy in alpha-synuclein-metal ion interactions, where Cu(II) binds specifically to the protein and triggers its aggregation under conditions that might be relevant for the development of PD. Two independent, non-interacting copper-binding sites were identified at the N-terminal region of AS, with significant difference in their affinities for the metal ion. In this work we have solved unknown details related to the structural binding specificity and aggregation enhancement mediated by Cu(II). The high-resolution structural characterization of the highest affinity N-terminus AS-Cu(II) complex is reported here. Through the measurement of AS aggregation kinetics we proved conclusively that the copper-enhanced AS amyloid formation is a direct consequence of the formation of the AS-Cu(II) complex at the highest affinity binding site. The kinetic behavior was not influenced by the His residue at position 50, arguing against an active role for this residue in the structural and biological events involved in the mechanism of copper-mediated AS aggregation. These new findings are central to elucidate the mechanism through which the metal ion participates in the fibrillization of AS and represent relevant progress in the understanding of the bioinorganic chemistry of PD.
Archives of Virology | 2010
Gonzalo Moratorio; Gonzalo Obal; Ana Dubra; Agustín Correa; Sergio Bianchi; Alejandro Buschiazzo; Juan Cristina; Otto Pritsch
Bovine leukaemia virus (BLV) is an oncogenic member of the genus Deltaretrovirus of the family Retroviridae. Recent studies revealed that BLV strains can be classified into six different genotypes and raised the possibility that another genotype may exist. In order to gain insight into the degree of genetic variability of BLV strains circulating in the South American region, a phylogenetic analysis was performed using gp51 env gene sequences. The results of these studies revealed the presence of seven BLV genotypes in this geographic region and the suitability of partial gp51 env gene sequences for phylogenetic inference. A significant number of amino acid substitutions found in BLV strains isolated in South America map to the second neutralization domain of gp51. A 3D molecular model of BLV gp51 revealed that these substitutions are located on the surface of the molecule. This may provide a selective advantage to overcome immune host neutralization.
Journal of Proteomics | 2011
Analía Lima; Rosario Durán; Gustavo E. Schujman; Maria Julia Marchissio; María Magdalena Portela; Gonzalo Obal; Otto Pritsch; Diego de Mendoza; Carlos Cerveñansky
Listeria monocytogenes is the causative agent of listeriosis, a very serious food-borne human disease. The analysis of the proteins coded by the L. monocytogenes genome reveals the presence of two eukaryotic-type Ser/Thr-kinases (lmo1820 and lmo0618) and a Ser/Thr-phosphatase (lmo1821). Protein phosphorylation regulates enzyme activities and protein interactions participating in physiological and pathophysiological processes in bacterial diseases. However in the case of L. monocytogenes there is scarce information about biochemical properties of these enzymes, as well as the physiological processes that they modulate. In the present work the catalytic domain of the protein coded by lmo1820 was produced as a functional His(6)-tagged Ser/Thr-kinase, and was denominated PrkA. PrkA was able to autophosphorylate specific Thr residues within its activation loop sequence. A similar autophosphorylation pattern was previously reported for Ser/Thr-kinases from related prokaryotes, whose role in kinase activity and substrate recruitment was demonstrated. We studied the kinase interactome using affinity chromatography and proteomic approaches. We identified 62 proteins that interact, either directly or indirectly, with the catalytic domain of PrkA, including proteins that participate in carbohydrates metabolism, cell wall metabolism and protein synthesis. Our results suggest that PrkA could be involved in the regulation of a variety of fundamental biological processes.
PLOS Neglected Tropical Diseases | 2012
Gonzalo Obal; Ana Lía Ramos; Valeria Silva; Analía Lima; Carlos Batthyany; María Inés Bessio; Fernando Ferreira; Gustavo Salinas; Ana Maria da Costa Ferreira
Antigen B (EgAgB) is the most abundant and immunogenic antigen produced by the larval stage (metacestode) of Echinococcus granulosus. It is a lipoprotein, the structure and function of which have not been completely elucidated. EgAgB apolipoprotein components have been well characterised; they share homology with a group of hydrophobic ligand binding proteins (HLBPs) present exclusively in cestode organisms, and consist of different isoforms of 8-kDa proteins encoded by a polymorphic multigene family comprising five subfamilies (EgAgB1 to EgAgB5). In vitro studies have shown that EgAgB apolipoproteins are capable of binding fatty acids. However, the identity of the native lipid components of EgAgB remains unknown. The present work was aimed at characterising the lipid ligands bound to EgAgB in vivo. EgAgB was purified to homogeneity from hydatid cyst fluid and its lipid fraction was extracted using chloroform∶methanol mixtures. This fraction constituted approximately 40–50% of EgAgB total mass. High-performance thin layer chromatography revealed that the native lipid moiety of EgAgB consists of a variety of neutral (mainly triacylglycerides, sterols and sterol esters) and polar (mainly phosphatidylcholine) lipids. Gas-liquid chromatography analysis showed that 16∶0, 18∶0 and 18∶1(n-9) are the most abundant fatty acids in EgAgB. Furthermore, size exclusion chromatography coupled to light scattering demonstrated that EgAgB comprises a population of particles heterogeneous in size, with an average molecular mass of 229 kDa. Our results provide the first direct evidence of the nature of the hydrophobic ligands bound to EgAgB in vivo and indicate that the structure and composition of EgAgB lipoprotein particles are more complex than previously thought, resembling high density plasma lipoproteins. Results are discussed considering what is known on lipid metabolism in cestodes, and taken into account the Echinococcus spp. genomic information regarding both lipid metabolism and the EgAgB gene family.
PLOS ONE | 2014
Agustín Correa; Sabino Pacheco; Ariel E. Mechaly; Gonzalo Obal; Ghislaine Béhar; Barbara Mouratou; Pablo Oppezzo; Pedro M. Alzari; Frédéric Pecorari
Glycosidases are associated with various human diseases. The development of efficient and specific inhibitors may provide powerful tools to modulate their activity. However, achieving high selectivity is a major challenge given that glycosidases with different functions can have similar enzymatic mechanisms and active-site architectures. As an alternative approach to small-chemical compounds, proteinaceous inhibitors might provide a better specificity by involving a larger surface area of interaction. We report here the design and characterization of proteinaceous inhibitors that specifically target endoglycosidases representative of the two major mechanistic classes; retaining and inverting glycosidases. These inhibitors consist of artificial affinity proteins, Affitins, selected against the thermophilic CelD from Clostridium thermocellum and lysozyme from hen egg. They were obtained from libraries of Sac7d variants, which involve either the randomization of a surface or the randomization of a surface and an artificially-extended loop. Glycosidase binders exhibited affinities in the nanomolar range with no cross-recognition, with efficient inhibition of lysozyme (Ki = 45 nM) and CelD (Ki = 95 and 111 nM), high expression yields in Escherichia coli, solubility, and thermal stabilities up to 81.1°C. The crystal structures of glycosidase-Affitin complexes validate our library designs. We observed that Affitins prevented substrate access by two modes of binding; covering or penetrating the catalytic site via the extended loop. In addition, Affitins formed salt-bridges with residues essential for enzymatic activity. These results lead us to propose the use of Affitins as versatile selective glycosidase inhibitors and, potentially, as enzymatic inhibitors in general.
Biochimica et Biophysica Acta | 2011
Pablo Oppezzo; Gonzalo Obal; Martín A. Baraibar; Otto Pritsch; Pedro M. Alzari; Alejandro Buschiazzo
Trans-sialidases are surface-located proteins in Trypanosoma cruzi that participate in key parasite-host interactions and parasite virulence. These proteins are encoded by a large multigenic family, with tandem-repeated and individual genes dispersed throughout the genome. While a large number of genes encode for catalytically active enzyme isoforms, many others display mutations that involve catalytic residues. The latter ultimately code for catalytically inactive proteins with very high similarity to their active paralogs. These inactive members have been shown to be lectins, able to bind sialic acid and galactose in vitro, although their cellular functions are yet to be fully established. We now report structural and biochemical evidence extending the current molecular understanding of these lectins. We have solved the crystal structure of one such catalytically inactive trans-sialidase-like protein, after soaking with a specific carbohydrate ligand, sialyl-α2,3-lactose. Instead of the expected trisaccharide, the binding pocket was observed occupied by α-lactose, strongly suggesting that the protein retains residual hydrolytic activity. This hypothesis was validated by enzyme kinetics assays, in comparison to fully active wild-type trans-sialidase. Surface plasmon resonance also confirmed that these trans-sialidase-like lectins are not only able to bind small oligosaccharides, but also sialylated glycoproteins, which is relevant in the physiologic scenario of parasite infection. Inactive trans-sialidase proteins appear thus to be β-methyl-galactosyl-specific lectins, evolved within an exo-sialidase scaffold, thus explaining why their lectin activity is triggered by the presence of terminal sialic acid.
Science | 2015
Gonzalo Obal; Felipe Trajtenberg; Federico Carrión; L. Tomé; Nicole Larrieux; X. Zhang; Otto Pritsch; Alejandro Buschiazzo
Retroviral capsids in their native form Capsid proteins of retroviruses form protective lattices around viral RNA molecules. The precise molecular details of how individual, full-length capsid proteins assemble to shield the viral genome; however, are not well understood. Obal et al. and Gres et al. now report high resolution crystal structures of the full length capsid proteins from Bovine Leukemia Virus and HIV-1, respectively. The two studies complement each other to reveal the dynamic nature of capsid protein assembly and of how individual capsid proteins interact in the lattice. The findings may have relevance for drug design. Science, this issue p. 95; see also p. 99 Crystal structures of native retroviral capsid proteins reveal how these large protein structures assemble and interact. Retroviruses depend on self-assembly of their capsid proteins (core particle) to yield infectious mature virions. Despite the essential role of the retroviral core, its high polymorphism has hindered high-resolution structural analyses. Here, we report the x-ray structure of the native capsid (CA) protein from bovine leukemia virus. CA is organized as hexamers that deviate substantially from sixfold symmetry, yet adjust to make two-dimensional pseudohexagonal arrays that mimic mature retroviral cores. Intra- and interhexameric quasi-equivalent contacts are uncovered, with flexible trimeric lateral contacts among hexamers, yet preserving very similar dimeric interfaces making the lattice. The conformation of each capsid subunit in the hexamer is therefore dictated by long-range interactions, revealing how the hexamers can also assemble into closed core particles, a relevant feature of retrovirus biology.
Cancer Immunology, Immunotherapy | 2013
Daniel Mazal; Richard Lo-Man; Sylvie Bay; Otto Pritsch; Edith Dériaud; Christelle Ganneau; Andrea Medeiros; Luis Ubillos; Gonzalo Obal; Nora Berois; Mariela Bollati-Fogolín; Claude Leclerc; Eduardo Osinaga
The Tn antigen (GalNAcα-O-Ser/Thr) is a well-established tumor-associated marker which represents a good target for the design of anti-tumor vaccines. Several studies have established that the binding of some anti-Tn antibodies could be affected by the density of Tn determinant or/and by the amino acid residues neighboring O-glycosylation sites. In the present study, using synthetic Tn-based vaccines, we have generated a panel of anti-Tn monoclonal antibodies. Analysis of their binding to various synthetic glycopeptides, modifying the amino acid carrier of the GalNAc(*) (Ser* vs Thr*), showed subtle differences in their fine specificities. We found that the recognition of these glycopeptides by some of these MAbs was strongly affected by the Tn backbone, such as a S*S*S* specific MAb (15G9) which failed to recognize a S*T*T* or a T*T*T* structure. Different binding patterns of these antibodies were also observed in FACS and Western blot analysis using three human cancer cell lines (MCF-7, LS174T and Jurkat). Importantly, an immunohistochemical analysis of human tumors (72 breast cancer and 44 colon cancer) showed the existence of different recognition profiles among the five antibodies evaluated, demonstrating that the aglyconic part of the Tn structure (Ser vs Thr) plays a key role in the anti-Tn specificity for breast and colon cancer detection. This new structural feature of the Tn antigen could be of important clinical value, notably due to the increasing interest of this antigen in anticancer vaccine design as well as for the development of anti-Tn antibodies for in vivo diagnostic and therapeutic strategies.
Biotechnology Journal | 2011
Bruno Manta; Gonzalo Obal; Alejandro Ricciardi; Otto Pritsch; Ana Denicola
Production of recombinant proteins is a process intensively used in the research laboratory. In addition, the main biotechnology market products are recombinant proteins and monoclonal antibodies. The biological (and clinical) properties of the protein product strongly depend on the conformation of the polypeptide. Therefore, assessment of the correct conformation of the produced protein is crucial. There is no single method to assess every aspect of protein structure or function. Depending on the protein, the methods of choice vary. There are general methods to evaluate not only mass and primary sequence of the protein, but also higher‐order structure. This review outlines the principal techniques for determining the conformation of a protein from structural (biophysical methods) to functional (in vitro binding assays) analyses.