Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gopal Gopinath is active.

Publication


Featured researches published by Gopal Gopinath.


Nucleic Acids Research | 2011

Reactome: a database of reactions, pathways and biological processes

David Croft; Gavin O’Kelly; Guanming Wu; Robin Haw; Marc Gillespie; Lisa Matthews; Michael Caudy; Phani Garapati; Gopal Gopinath; Bijay Jassal; Steven Jupe; Irina Kalatskaya; Shahana Mahajan; Bruce May; Nelson Ndegwa; Esther Schmidt; Veronica Shamovsky; Christina K. Yung; Ewan Birney; Henning Hermjakob; Peter D’Eustachio; Lincoln Stein

Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualization system that supports zooming, scrolling and event highlighting. It exploits PSIQUIC web services to overlay our curated pathways with molecular interaction data from the Reactome Functional Interaction Network and external interaction databases such as IntAct, BioGRID, ChEMBL, iRefIndex, MINT and STRING. Our Pathway and Expression Analysis tools enable ID mapping, pathway assignment and overrepresentation analysis of user-supplied data sets. To support pathway annotation and analysis in other species, we continue to make orthology-based inferences of pathways in non-human species, applying Ensembl Compara to identify orthologs of curated human proteins in each of 20 other species. The resulting inferred pathway sets can be browsed and analyzed with our Species Comparison tool. Collaborations are also underway to create manually curated data sets on the Reactome framework for chicken, Drosophila and rice.


Nucleic Acids Research | 2009

Reactome knowledgebase of human biological pathways and processes.

Lisa Matthews; Gopal Gopinath; Marc Gillespie; Michael Caudy; David Croft; Bernard de Bono; Phani Garapati; Jill Hemish; Henning Hermjakob; Bijay Jassal; Alex Kanapin; Suzanna E. Lewis; Shahana Mahajan; Bruce May; Esther Schmidt; Imre Vastrik; Guanming Wu; Ewan Birney; Lincoln Stein; Peter D’Eustachio

Reactome (http://www.reactome.org) is an expert-authored, peer-reviewed knowledgebase of human reactions and pathways that functions as a data mining resource and electronic textbook. Its current release includes 2975 human proteins, 2907 reactions and 4455 literature citations. A new entity-level pathway viewer and improved search and data mining tools facilitate searching and visualizing pathway data and the analysis of user-supplied high-throughput data sets. Reactome has increased its utility to the model organism communities with improved orthology prediction methods allowing pathway inference for 22 species and through collaborations to create manually curated Reactome pathway datasets for species including Arabidopsis, Oryza sativa (rice), Drosophila and Gallus gallus (chicken). Reactomes data content and software can all be freely used and redistributed under open source terms.


Nature Biotechnology | 2010

The BioPAX community standard for pathway data sharing

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur

Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.


Nucleic Acids Research | 2004

The Rat Genome Database (RGD): developments towards a phenome database

Norberto de la Cruz; Susan Bromberg; Dean Pasko; Mary Shimoyama; Simon N. Twigger; Jiali Chen; Chin-Fu Chen; Chunyu Fan; Cindy Foote; Gopal Gopinath; Glenn Harris; Aubrey Hughes; Yuan Ji; Weihong Jin; Dawei Li; Jedidiah Mathis; Natalya Nenasheva; Jeff Nie; Rajni Nigam; Victoria Petri; Dorothy Reilly; Weiye Wang; Wenhua Wu; Angela Zuniga-Meyer; Lan Zhao; Anne E. Kwitek; Peter J. Tonellato; Howard J. Jacob

The Rat Genome Database (RGD) (http://rgd.mcw.edu) aims to meet the needs of its community by providing genetic and genomic infrastructure while also annotating the strengths of rat research: biochemistry, nutrition, pharmacology and physiology. Here, we report on RGDs development towards creating a phenome database. Recent developments can be categorized into three groups. (i) Improved data collection and integration to match increased volume and biological scope of research. (ii) Knowledge representation augmented by the implementation of a new ontology and annotation system. (iii) The addition of quantitative trait loci data, from rat, mouse and human to our advanced comparative genomics tools, as well as the creation of new, and enhancement of existing, tools to enable users to efficiently browse and survey research data. The emphasis is on helping researchers find genes responsible for disease through the use of rat models. These improvements, combined with the genomic sequence of the rat, have led to a successful year at RGD with over two million page accesses that represent an over 4-fold increase in a year. Future plans call for increased annotation of biological information on the rat elucidated through its use as a model for human pathobiology. The continued development of toolsets will facilitate integration of these data into the context of rat genomic sequence, as well as allow comparisons of biological and genomic data with the human genomic sequence and of an increasing number of organisms.


Applied and Environmental Microbiology | 2011

Molecular Characterization of Cronobacter Lipopolysaccharide O-Antigen Gene Clusters and Development of Serotype-Specific PCR Assays

K. G. Jarvis; C. J. Grim; A. A. Franco; Gopal Gopinath; Venugopal Sathyamoorthy; L. Hu; J. A. Sadowski; C. Lee; Ben D. Tall

ABSTRACT Cronobacter (formerly Enterobacter sakazakii) is a recently defined genus consisting of six species, C. sakazakii, C. malonaticus, C. dublinensis, C. muytjensii, C. turicensis, and Cronobacter genomospecies 1. In this study, MboII restriction fragment length polymorphism (RFLP) patterns of O-antigen gene clusters, located between galF and gnd, were used to identify serotypes in Cronobacter spp. Seven O-antigen RFLP clusters were generated, including three C. sakazakii clusters, previously identified as serotypes O1, O2, and O3. The O-antigen regions of six strains with unique RFLP patterns, including two C. sakazakii strains, two C. malonaticus strains, one C. turicensis strain, and one C. muytjensii strain, revealed three O-antigen gene clusters shared among Cronobacter species. PCR assays were developed, targeting the wzx O-antigen polymerase gene, and used to screen 231 Cronobacter strains to determine the frequency of these newly identified serotypes.


Applied and Environmental Microbiology | 2011

Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp.

A. A. Franco; L. Hu; C. J. Grim; Gopal Gopinath; Venugopal Sathyamoorthy; K. G. Jarvis; C. Lee; J. A. Sadowski; J. Kim; Mahendra H. Kothary; B. A. McCardell; Ben D. Tall

ABSTRACT Cronobacter spp. are emerging neonatal pathogens that cause meningitis, sepsis, and necrotizing enterocolitis. The genus Chronobacter consists of six species: C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C. dublinensis, and Cronobacter genomospecies group 1. Whole-genome sequencing of C. sakazakii BAA-894 and C. turicensis z3032 revealed that they harbor similarly sized plasmids identified as pESA3 (131 kb) and pCTU1 (138 kb), respectively. In silico analysis showed that both plasmids encode a single RepFIB-like origin of replication gene, repA, as well as two iron acquisition systems (eitCBAD and iucABCD/iutA). In a chrome azurol S agar diffusion assay, it was demonstrated that siderophore activity was associated with the presence of pESA3 or pCTU1. Additionally, pESA3 contains a cpa (Cronobacter plasminogen activator) gene and a 17-kb type 6 secretion system (T6SS) locus, while pCTU1 contains a 27-kb region encoding a filamentous hemagglutinin gene (fhaB), its specifc transporter gene (fhaC), and associated putative adhesins (FHA locus), suggesting that these are virulence plasmids. In a repA-targeted PCR assay, 97% of 229 Cronobacter species isolates were found to possess a homologous RepFIB plasmid. All repA PCR-positive strains were also positive for the eitCBAD and iucABCD/iutA iron acquisition systems. However, the presence of cpa, T6SS, and FHA loci depended on species, demonstrating a strong correlation with the presence of virulence traits, plasmid type, and species. These results support the hypothesis that these plasmids have evolved from a single archetypical plasmid backbone through the cointegration, or deletion, of specific virulence traits in each species.


BMC Genomics | 2013

Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species- level bidirectional divergence driven by niche adaptation

Christopher J Grim; Michael L. Kotewicz; Karen A. Power; Gopal Gopinath; A. A. Franco; Karen Jarvis; Qiong Q. Yan; Scott A. Jackson; Venugopal Sathyamoorthy; Lan Hu; Franco Pagotto; Carol Iversen; Angelika Lehner; Roger Stephan; Séamus Fanning; Ben D. Tall

BackgroundMembers of the genus Cronobacter are causes of rare but severe illness in neonates and preterm infants following the ingestion of contaminated infant formula. Seven species have been described and two of the species genomes were subsequently published. In this study, we performed comparative genomics on eight strains of Cronobacter, including six that we sequenced (representing six of the seven species) and two previously published, closed genomes.ResultsWe identified and characterized the features associated with the core and pan genome of the genus Cronobacter in an attempt to understand the evolution of these bacteria and the genetic content of each species. We identified 84 genomic regions that are present in two or more Cronobacter genomes, along with 45 unique genomic regions. Many potentially horizontally transferred genes, such as lysogenic prophages, were also identified. Most notable among these were several type six secretion system gene clusters, transposons that carried tellurium, copper and/or silver resistance genes, and a novel integrative conjugative element.ConclusionsCronobacter have diverged into two clusters, one consisting of C. dublinensis and C. muytjensii (Cdub-Cmuy) and the other comprised of C. sakazakii, C. malonaticus, C. universalis, and C. turicensis, (Csak-Cmal-Cuni-Ctur) from the most recent common ancestral species. While several genetic determinants for plant-association and human virulence could be found in the core genome of Cronobacter, the four Cdub-Cmuy clade genomes contained several accessory genomic regions important for survival in a plant-associated environmental niche, while the Csak-Cmal-Cuni-Ctur clade genomes harbored numerous virulence-related genetic traits.


Infection and Immunity | 2011

Cpa, the Outer Membrane Protease of Cronobacter sakazakii, Activates Plasminogen and Mediates Resistance to Serum Bactericidal Activity

A. A. Franco; Mahendra H. Kothary; Gopal Gopinath; K. G. Jarvis; L. Hu; A. R. Datta; Barbara A. McCardell; Ben D. Tall

ABSTRACT Cronobacter spp. are emerging neonatal pathogens in humans, associated with outbreaks of meningitis and sepsis. To cause disease, they must survive in blood and invade the central nervous system by penetrating the blood-brain barrier. C. sakazakii BAA-894 possesses an ∼131-kb plasmid (pESA3) that encodes an outer membrane protease (Cpa) that has significant identity to proteins that belong to the Pla subfamily of omptins. Members of this subfamily of proteins degrade a number of serum proteins, including circulating complement, providing protection from the complement-dependent serum killing. Moreover, proteins of the Pla subfamily can cause uncontrolled plasmin activity by converting plasminogen to plasmin and inactivating the plasmin inhibitor α2-antiplasmin (α2-AP). These reactions enhance the spread and invasion of bacteria in the host. In this study, we found that an isogenic cpa mutant showed reduced resistance to serum in comparison to its parent C. sakazakii BAA-894 strain. Overexpression of Cpa in C. sakazakii or Escherichia coli DH5α showed that Cpa proteolytically cleaved complement components C3, C3a, and C4b. Furthermore, a strain of C. sakazakii overexpressing Cpa caused a rapid activation of plasminogen and inactivation of α2-AP. These results strongly suggest that Cpa may be an important virulence factor involved in serum resistance, as well as in the spread and invasion of C. sakazakii.


Applied and Environmental Microbiology | 2013

Multiplex PCR assay targeting a diguanylate cyclase-encoding gene, cgcA, to differentiate species within the genus Cronobacter.

L. Carter; L. A. Lindsey; C. J. Grim; Venugopal Sathyamoorthy; K. G. Jarvis; Gopal Gopinath; C. Lee; J. A. Sadowski; L. Trach; M. Pava-Ripoll; Barbara A. McCardell; Ben D. Tall; L. Hu

ABSTRACT In a comparison to the widely used Cronobacter rpoB PCR assay, a highly specific multiplexed PCR assay based on cgcA, a diguanylate cyclase gene, that identified all of the targeted six species among 305 Cronobacter isolates was designed. This assay will be a valuable tool for identifying suspected Cronobacter isolates from food-borne investigations.


Applied and Environmental Microbiology | 2012

Identification and characterization of Cronobacter iron acquisition systems.

C. J. Grim; Mahendra H. Kothary; Gopal Gopinath; K. G. Jarvis; J. Jean-Gilles Beaubrun; Michael McClelland; Ben D. Tall; A. A. Franco

ABSTRACT Cronobacter spp. are emerging pathogens that cause severe infantile meningitis, septicemia, or necrotizing enterocolitis. Contaminated powdered infant formula has been implicated as the source of Cronobacter spp. in most cases, but questions still remain regarding the natural habitat and virulence potential for each strain. The iron acquisition systems in 231 Cronobacter strains isolated from different sources were identified and characterized. All Cronobacter spp. have both the Feo and Efe systems for acquisition of ferrous iron, and all plasmid-harboring strains (98%) have the aerobactin-like siderophore, cronobactin, for transport of ferric iron. All Cronobacter spp. have the genes encoding an enterobactin-like siderophore, although it was not functional under the conditions tested. Furthermore, all Cronobacter spp. have genes encoding five receptors for heterologous siderophores. A ferric dicitrate transport system (fec system) is encoded specifically by a subset of Cronobacter sakazakii and C. malonaticus strains, of which a high percentage were isolated from clinical samples. Phylogenetic analysis confirmed that the fec system is most closely related to orthologous genes present in human-pathogenic bacterial strains. Moreover, all strains of C. dublinensis and C. muytjensii encode two receptors, FcuA and Fct, for heterologous siderophores produced by plant pathogens. Identification of putative Fur boxes and expression of the genes under iron-depleted conditions revealed which genes and operons are components of the Fur regulon. Taken together, these results support the proposition that C. sakazakii and C. malonaticus may be more associated with the human host and C. dublinensis and C. muytjensii with plants.

Collaboration


Dive into the Gopal Gopinath's collaboration.

Top Co-Authors

Avatar

Ben D. Tall

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Venugopal Sathyamoorthy

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannah R. Chase

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Guanming Wu

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Séamus Fanning

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Imre Vastrik

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isha R. Patel

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Jayanthi Gangiredla

Center for Food Safety and Applied Nutrition

View shared research outputs
Researchain Logo
Decentralizing Knowledge