Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter D'Eustachio is active.

Publication


Featured researches published by Peter D'Eustachio.


Nucleic Acids Research | 2014

The Reactome pathway knowledgebase

Antonio Fabregat; Konstantinos Sidiropoulos; Phani Garapati; Marc Gillespie; Kerstin Hausmann; Robin Haw; Bijay Jassal; Steven Jupe; Florian Korninger; Sheldon J. McKay; Lisa Matthews; Bruce May; Marija Milacic; Karen Rothfels; Veronica Shamovsky; Marissa Webber; Joel Weiser; Mark A. Williams; Guanming Wu; Lincoln Stein; Henning Hermjakob; Peter D'Eustachio

The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations—an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently.


Nucleic Acids Research | 2004

Reactome: a knowledgebase of biological pathways

G. Joshi-Tope; Marc Gillespie; Imre Vastrik; Peter D'Eustachio; Esther Schmidt; B. de Bono; Bijay Jassal; G.R. Gopinath; G.R. Wu; Lisa Matthews; Suzanna E. Lewis; Ewan Birney; Lincoln Stein

Reactome, located at http://www.reactome.org is a curated, peer-reviewed resource of human biological processes. Given the genetic makeup of an organism, the complete set of possible reactions constitutes its reactome. The basic unit of the Reactome database is a reaction; reactions are then grouped into causal chains to form pathways. The Reactome data model allows us to represent many diverse processes in the human system, including the pathways of intermediary metabolism, regulatory pathways, and signal transduction, and high-level processes, such as the cell cycle. Reactome provides a qualitative framework, on which quantitative data can be superimposed. Tools have been developed to facilitate custom data entry and annotation by expert biologists, and to allow visualization and exploration of the finished dataset as an interactive process map. Although our primary curational domain is pathways from Homo sapiens, we regularly create electronic projections of human pathways onto other organisms via putative orthologs, thus making Reactome relevant to model organism research communities. The database is publicly available under open source terms, which allows both its content and its software infrastructure to be freely used and redistributed.


PLOS Biology | 2003

The genome sequence of Caenorhabditis briggsae: A platform for comparative genomics

Lincoln Stein; Zhirong Bao; Darin Blasiar; Thomas Blumenthal; Michael R. Brent; Nansheng Chen; Asif T. Chinwalla; Laura Clarke; Chris Clee; Avril Coghlan; Alan Coulson; Peter D'Eustachio; David H. A. Fitch; Lucinda A. Fulton; Robert Fulton; Sam Griffiths-Jones; Todd W. Harris; LaDeana W. Hillier; Ravi S. Kamath; Patricia E. Kuwabara; Elaine R. Mardis; Marco A. Marra; Tracie L. Miner; Patrick Minx; James C. Mullikin; Robert W. Plumb; Jane Rogers; Jacqueline E. Schein; Marc Sohrmann; John Spieth

The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.


Nature Biotechnology | 2010

The BioPAX community standard for pathway data sharing

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur

Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.


Molecular and Cellular Biology | 1990

Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line.

George Drivas; Andy Shih; Elias E. Coutavas; Mark G. Rush; Peter D'Eustachio

A mixed-oligonucleotide probe was used to identify four ras-like coding sequences in a human teratocarcinoma cDNA library. Two of these sequences resembled the rho genes, one was closely related to H-, K-, and N-ras, and one shared only the four sequence domains that define the ras gene superfamily. Homologs of the four genes were found in genomic DNA from a variety of mammals and from chicken. The genes were transcriptionally active in a range of human cell types.


Cancers | 2012

Annotating Cancer Variants and Anti-Cancer Therapeutics in Reactome

Marija Milacic; Robin Haw; Karen Rothfels; Guanming Wu; David Croft; Henning Hermjakob; Peter D'Eustachio; Lincoln Stein

Reactome describes biological pathways as chemical reactions that closely mirror the actual physical interactions that occur in the cell. Recent extensions of our data model accommodate the annotation of cancer and other disease processes. First, we have extended our class of protein modifications to accommodate annotation of changes in amino acid sequence and the formation of fusion proteins to describe the proteins involved in disease processes. Second, we have added a disease attribute to reaction, pathway, and physical entity classes that uses disease ontology terms. To support the graphical representation of “cancer” pathways, we have adapted our Pathway Browser to display disease variants and events in a way that allows comparison with the wild type pathway, and shows connections between perturbations in cancer and other biological pathways. The curation of pathways associated with cancer, coupled with our efforts to create other disease-specific pathways, will interoperate with our existing pathway and network analysis tools. Using the Epidermal Growth Factor Receptor (EGFR) signaling pathway as an example, we show how Reactome annotates and presents the altered biological behavior of EGFR variants due to their altered kinase and ligand-binding properties, and the mode of action and specificity of anti-cancer therapeutics.


Nucleic Acids Research | 2014

Gramene 2013: comparative plant genomics resources

Marcela K. Monaco; Joshua C. Stein; Sushma Naithani; Sharon Wei; Palitha Dharmawardhana; Sunita Kumari; Vindhya Amarasinghe; Ken Youens-Clark; James Thomason; Justin Preece; Shiran Pasternak; Andrew Olson; Yinping Jiao; Zhenyuan Lu; Daniel M. Bolser; Arnaud Kerhornou; Daniel M. Staines; Brandon Walts; Guanming Wu; Peter D'Eustachio; Robin Haw; David Croft; Paul J. Kersey; Lincoln Stein; Pankaj Jaiswal; Doreen Ware

Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. Whole-genome alignments complemented by phylogenetic gene family trees help infer syntenic and orthologous relationships. Genetic variation data, sequences and genome mappings available for 10 species, including Arabidopsis, rice and maize, help infer putative variant effects on genes and transcripts. The pathways section also hosts 10 species-specific metabolic pathways databases developed in-house or by our collaborators using Pathway Tools software, which facilitates searches for pathway, reaction and metabolite annotations, and allows analyses of user-defined expression datasets. Recently, we released a Plant Reactome portal featuring 133 curated rice pathways. This portal will be expanded for Arabidopsis, maize and other plant species. We continue to provide genetic and QTL maps and marker datasets developed by crop researchers. The project provides a unique community platform to support scientific research in plant genomics including studies in evolution, genetics, plant breeding, molecular biology, biochemistry and systems biology.


Oncogene | 1999

Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth.

Gretchen A. Murphy; Patricia A. Solski; Stephanie A. Jillian; Pablo Pérez de la Ossa; Peter D'Eustachio; Channing J. Der; Mark G. Rush

The small Ras-related GTPase, TC10, has been classified on the basis of sequence homology to be a member of the Rho family. This family, which includes the Rho, Rac and CDC42 subfamilies, has been shown to regulate a variety of apparently diverse cellular processes such as actin cytoskeletal organization, mitogen-activated protein kinase (MAPK) cascades, cell cycle progression and transformation. In order to begin a study of TC10 biological function, we expressed wild type and various mutant forms of this protein in mammalian cells and investigated both the intracellular localization of the expressed proteins and their abilities to stimulate known Rho family-associated processes. Wild type TC10 was located predominantly in the cell membrane (apparently in the same regions as actin filaments), GTPase defective (75L) and GTP-binding defective (31N) mutants were located predominantly in cytoplasmic perinuclear regions, and a deletion mutant lacking the carboxyl terminal residues required for post-translational prenylation was located predominantly in the nucleus. The GTPase defective (constitutively active) TC10 mutant: (1) stimulated the formation of long filopodia; (2) activated c-Jun amino terminal kinase (JNK); (3) activated serum response factor (SRF)-dependent transcription; (4) activated NF-κB-dependent transcription; and (5) synergized with an activated Raf-kinase (Raf-CAAX) to transform NIH3T3 cells. In addition, wild type TC10 function is required for full H-Ras transforming potential. We demonstrate that an intact effector domain and carboxyl terminal prenylation signal are required for proper TC10 function and that TC10 signals to at least two separable downstream target pathways. In addition, TC10 interacted with the actin-binding and filament-forming protein, profilin, in both a two-hybrid cDNA library screen, and an in vitro binding assay. Taken together, these data support a classification of TC10 as a member of the Rho family, and in particular, suggest that TC10 functions to regulate cellular signaling to the actin cytoskeleton and processes associated with cell growth.


Mammalian Genome | 1992

A linkage map of mouse Chromosome 1 using an interspecific cross segregating for the gld autoimmunity mutation

Mark L. Watson; Peter D'Eustachio; Beverly A. Mock; Alfred D. Steinberg; Herbert C. Morse; Rebecca J. Oakey; Thad A. Howard; Julie M. Rochelle; Michael F. Seldin

An interspecific backross was used to define a high resolution linkage map of mouse Chromosome (Chr) 1 and to analyze the segregation of the generalized lymphoproliferative disease (gld) mutation. Mice homozygous for gld have multiple features of autoimmune disease. Analysis of up to 428 progeny from the backcross [(C3H/HeJ-gld x Mus spretus)F1 x C3H/HeJ-gld] established a map that spans 77.6 cM and includes 56 markers distributed over 34 ordered genetic loci. The gld mutation was mapped to a less than 1 cM segment on distal mouse Chr 1 using 357 gld phenotype-positive backcross mice. A second backcross, between the laboratory strains C57BL/6J and SWR/J, was examined to compare recombination frequency between selected markers on mouse Chr 1. Significant differences in crossover frequency were demonstrated between the interspecific backcross and the inbred laboratory cross for the entire interval studied. Sex difference in meiotic crossover frequency was also significant in the laboratory mouse cross. Two linkage groups known to be conserved between segments of mouse Chr 1 and the long arm of human Chrs 1 and 2 where further defined and a new conserved linkage group was identified that includes markers of distal mouse Chr 1 and human Chr 1, bands q32 to q42.


Nucleic Acids Research | 2016

Gramene 2016: comparative plant genomics and pathway resources

Marcela K. Tello-Ruiz; Joshua C. Stein; Sharon Wei; Justin Preece; Andrew Olson; Sushma Naithani; Vindhya Amarasinghe; Palitha Dharmawardhana; Yinping Jiao; Joseph Mulvaney; Sunita Kumari; Kapeel Chougule; Justin Elser; Bo Wang; James Thomason; Daniel M. Bolser; Arnaud Kerhornou; Brandon Walts; Nuno A. Fonseca; Laura Huerta; Maria Keays; Y. Amy Tang; Helen Parkinson; Antonio Fabregat; Sheldon J. McKay; Joel Weiser; Peter D'Eustachio; Lincoln Stein; Robert Petryszak; Paul J. Kersey

Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ∼200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBIs Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramenes archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials.

Collaboration


Dive into the Peter D'Eustachio's collaboration.

Top Co-Authors

Avatar

Lincoln Stein

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Guanming Wu

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Imre Vastrik

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bijay Jassal

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

David Croft

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Ewan Birney

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gopal Gopinath

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge