Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gopuraja Dharmalingam is active.

Publication


Featured researches published by Gopuraja Dharmalingam.


Nature Cell Biology | 2013

A complex secretory program orchestrated by the inflammasome controls paracrine senescence

Juan Carlos Acosta; Ana Banito; Torsten Wuestefeld; Athena Georgilis; Peggy Janich; Jennifer P. Morton; Dimitris Athineos; Tae-Won Kang; Felix Lasitschka; Mindaugas Andrulis; Gloria Pascual; Kelly J. Morris; Sadaf Khan; Hong Jin; Gopuraja Dharmalingam; Ambrosius P. Snijders; Thomas J. Carroll; David Capper; Catrin Pritchard; Gareth J. Inman; Thomas Longerich; Owen J. Sansom; Lars Zender; Jesús Gil

Oncogene-induced senescence (OIS) is crucial for tumour suppression. Senescent cells implement a complex pro-inflammatory response termed the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence, activates immune surveillance and paradoxically also has pro-tumorigenic properties. Here, we present evidence that the SASP can also induce paracrine senescence in normal cells both in culture and in human and mouse models of OIS in vivo. Coupling quantitative proteomics with small-molecule screens, we identified multiple SASP components mediating paracrine senescence, including TGF-β family ligands, VEGF, CCL2 and CCL20. Amongst them, TGF-β ligands play a major role by regulating p15INK4b and p21CIP1. Expression of the SASP is controlled by inflammasome-mediated IL-1 signalling. The inflammasome and IL-1 signalling are activated in senescent cells and IL-1α expression can reproduce SASP activation, resulting in senescence. Our results demonstrate that the SASP can cause paracrine senescence and impact on tumour suppression and senescence in vivo.


Nature Cell Biology | 2015

mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype

Nicolás Herranz; Suchira Gallage; Massimiliano Mellone; Torsten Wuestefeld; Sabrina Klotz; Christopher J. Hanley; Selina Raguz; Juan Carlos Acosta; Andrew J. Innes; Ana Banito; Athena Georgilis; Alex Montoya; Katharina Wolter; Gopuraja Dharmalingam; Peter Faull; Thomas Carroll; Juan Pedro Martinez-Barbera; Pedro R. Cutillas; Florian Reisinger; Mathias Heikenwalder; Richard A. Miller; Dominic J. Withers; Lars Zender; Gareth J. Thomas; Jesús Gil

Senescent cells secrete a combination of factors collectively known as the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence and activates an immune surveillance response, but it can also show pro-tumorigenic properties and contribute to age-related pathologies. In a drug screen to find new SASP regulators, we uncovered the mTOR inhibitor rapamycin as a potent SASP suppressor. Here we report a mechanism by which mTOR controls the SASP by differentially regulating the translation of the MK2 (also known as MAPKAPK2) kinase through 4EBP1. In turn, MAPKAPK2 phosphorylates the RNA-binding protein ZFP36L1 during senescence, inhibiting its ability to degrade the transcripts of numerous SASP components. Consequently, mTOR inhibition or constitutive activation of ZFP36L1 impairs the non-cell-autonomous effects of senescent cells in both tumour-suppressive and tumour-promoting contexts. Altogether, our results place regulation of the SASP as a key mechanism by which mTOR could influence cancer, age-related diseases and immune responses.


Blood | 2013

Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation

Isabel Ferreirós-Vidal; Thomas Carroll; Benjamin A. Taylor; Anna Terry; Ziwei Liang; Ludovica Bruno; Gopuraja Dharmalingam; Sanjay Khadayate; Bradley S. Cobb; Stephen T. Smale; Mikhail Spivakov; Prashant K. Srivastava; Enrico Petretto; Amanda G. Fisher; Matthias Merkenschlager

Ikaros family DNA-binding proteins are critical regulators of B-cell development. Because the current knowledge of Ikaros targets in B-cell progenitors is limited, we have identified genes that are bound and regulated by Ikaros in pre-B cells. To elucidate the role of Ikaros in B-cell lineage specification and differentiation, we analyzed the differential expression of Ikaros targets during the progression of multipotent to lymphoid-restricted progenitors, B- and T-cell lineage specification, and progression along the B-cell lineage. Ikaros targets accounted for one-half of all genes up-regulated during B-cell lineage specification in vivo, explaining the essential role of Ikaros in this process. Expression of the Ikaros paralogs Ikzf1 and Ikzf3 increases incrementally during B-cell progenitor differentiation, and, remarkably, inducible Ikaros expression in cycling pre-B cells was sufficient to drive transcriptional changes resembling the differentiation of cycling to resting pre-Bcells in vivo. The data suggest that Ikaros transcription factor dosage drives the progression of progenitors along a predetermined lineage by regulating multiple targets in key pathways, including pre-B–cell receptor signaling, cell cycle progression, and lymphocyte receptor rearrangement.Our approachmay be of general use to map the contribution of transcription factors to cell lineage commitment and differentiation.


The EMBO Journal | 2013

Interplay between Homeobox proteins and Polycomb repressive complexes in p16INK4a regulation

Nadine Martin; Nikolay Popov; Francesca Aguilo; Ana O'Loghlen; Selina Raguz; Ambrosius P. Snijders; Gopuraja Dharmalingam; SiDe Li; Efstathia Thymiakou; Thomas Carroll; Bernd B. Zeisig; Chi Wai Eric So; Gordon Peters; Vasso Episkopou; Martin J. Walsh; Jesús Gil

The INK4/ARF locus regulates senescence and is frequently altered in cancer. In normal cells, the INK4/ARF locus is found silenced by Polycomb repressive complexes (PRCs). Which are the mechanisms responsible for the recruitment of PRCs to INK4/ARF and their other target genes remains unclear. In a genetic screen for transcription factors regulating senescence, we identified the homeodomain‐containing protein HLX1 (H2.0‐like homeobox 1). Expression of HLX1 extends cellular lifespan and blunts oncogene‐induced senescence. Using quantitative proteomics, we identified p16INK4a as the key target mediating the effects of HLX1 in senescence. HLX1 represses p16INK4a transcription by recruiting PRCs and HDAC1. This mechanism has broader implications, as HLX1 also regulates a subset of PRC targets besides p16INK4a. Finally, sampling members of the Homeobox family, we identified multiple genes with ability to repress p16INK4a. Among them, we found HOXA9 (Homeobox A9), a putative oncogene in leukaemia, which also recruits PRCs and HDAC1 to regulate p16INK4a. Our results reveal an unexpected and conserved interplay between homeodomain‐containing proteins and PRCs with implications in senescence, development and cancer.


Genes & Development | 2015

Initiation and maintenance of pluripotency gene expression in the absence of cohesin

Thais Lavagnolli; Preksha Gupta; Eva Hörmanseder; Hegias Mira-Bontenbal; Gopuraja Dharmalingam; Thomas Carroll; John B. Gurdon; Amanda G. Fisher; Matthias Merkenschlager

Cohesin is implicated in establishing and maintaining pluripotency. Whether this is because of essential cohesin functions in the cell cycle or in gene regulation is unknown. Here we tested cohesins contribution to reprogramming in systems that reactivate the expression of pluripotency genes in the absence of proliferation (embryonic stem [ES] cell heterokaryons) or DNA replication (nuclear transfer). Contrary to expectations, cohesin depletion enhanced the ability of ES cells to initiate somatic cell reprogramming in heterokaryons. This was explained by increased c-Myc (Myc) expression in cohesin-depleted ES cells, which promoted DNA replication-dependent reprogramming of somatic fusion partners. In contrast, cohesin-depleted somatic cells were poorly reprogrammed in heterokaryons, due in part to defective DNA replication. Pluripotency gene induction was rescued by Myc, which restored DNA replication, and by nuclear transfer, where reprogramming does not require DNA replication. These results redefine cohesins role in pluripotency and reveal a novel function for Myc in promoting the replication-dependent reprogramming of somatic nuclei.


Cell Cycle | 2013

Co-regulation of senescence-associated genes by oncogenic homeobox proteins and polycomb repressive complexes

Nadine Martin; Selina Raguz; Gopuraja Dharmalingam; Jesús Gil

Cellular senescence is a stable cell cycle arrest that can be induced by stresses such as telomere shortening, oncogene activation or DNA damage. Senescence is a potent anticancer barrier that needs to be circumvented during tumorigenesis. The cell cycle regulator p16INK4a is a key effector upregulated during senescence. Polycomb repressive complexes (PRCs) play a crucial role in silencing the INK4/ARF locus, which encodes for p16INK4a, but the mechanisms by which PRCs are recruited to this locus as well as to other targets remain poorly understood. Recently we discovered the ability of the homeobox proteins HLX1 (H2.0-like homeobox 1) and HOXA9 (Homeobox A9) to bypass senescence. We showed that HLX1 and HOXA9 recruit PRCs to repress INK4a, which constitutes a key mechanism explaining their effects on senescence. Here we provide evidence for the regulation of additional senescence-associated PRC target genes by HLX1 and HOXA9. As both HLX1 and HOXA9 are oncogenes implicated in leukemogenesis, we discuss the implications that the collaboration between Homeobox proteins and PRCs has for senescence and cancer.


Stem cell reports | 2016

MicroRNAs of the miR-290–295 Family Maintain Bivalency in Mouse Embryonic Stem Cells

Bryony Graham; Antoine Marçais; Gopuraja Dharmalingam; Thomas Carroll; Chryssa Kanellopoulou; Johannes Graumann; Tatyana B. Nesterova; Anna Bermange; Pijus Brazauskas; Barbara Xella; Skirmantas Kriaucionis; Douglas R. Higgs; Neil Brockdorff; Matthias Mann; Amanda G. Fisher; Matthias Merkenschlager

Summary Numerous developmentally regulated genes in mouse embryonic stem cells (ESCs) are marked by both active (H3K4me3)- and polycomb group (PcG)-mediated repressive (H3K27me3) histone modifications. This bivalent state is thought to be important for transcriptional poising, but the mechanisms that regulate bivalent genes and the bivalent state remain incompletely understood. Examining the contribution of microRNAs (miRNAs) to the regulation of bivalent genes, we found that the miRNA biogenesis enzyme DICER was required for the binding of the PRC2 core components EZH2 and SUZ12, and for the presence of the PRC2-mediated histone modification H3K27me3 at many bivalent genes. Genes that lost bivalency were preferentially upregulated at the mRNA and protein levels. Finally, reconstituting Dicer-deficient ESCs with ESC miRNAs restored bivalent gene repression and PRC2 binding at formerly bivalent genes. Therefore, miRNAs regulate bivalent genes and the bivalent state itself.


Nature Communications | 2016

Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming

Irene Cantone; Hakan Bagci; Dirk Dormann; Gopuraja Dharmalingam; Tatyana B. Nesterova; Neil Brockdorff; Claire Rougeulle; Céline Vallot; Edith Heard; Ronan Chaligné; Matthias Merkenschlager; Amanda G. Fisher

Erasure of epigenetic memory is required to convert somatic cells towards pluripotency. Reactivation of the inactive X chromosome (Xi) has been used to model epigenetic reprogramming in mouse, but human studies are hampered by Xi epigenetic instability and difficulties in tracking partially reprogrammed iPSCs. Here we use cell fusion to examine the earliest events in the reprogramming-induced Xi reactivation of human female fibroblasts. We show that a rapid and widespread loss of Xi-associated H3K27me3 and XIST occurs in fused cells and precedes the bi-allelic expression of selected Xi-genes by many heterokaryons (30–50%). After cell division, RNA-FISH and RNA-seq analyses confirm that Xi reactivation remains partial and that induction of human pluripotency-specific XACT transcripts is rare (1%). These data effectively separate pre- and post-mitotic events in reprogramming-induced Xi reactivation and reveal a complex hierarchy of epigenetic changes that are required to reactivate the genes on the human Xi chromosome.


Genes & Development | 2017

Coupling shRNA screens with single-cell RNA-seq identifies a dual role for mTOR in reprogramming-induced senescence

Marieke Aarts; Athena Georgilis; Meryam Beniazza; Patrizia Beolchi; Ana Banito; Thomas Carroll; Marizela Kulisic; Daniel F. Kaemena; Gopuraja Dharmalingam; Nadine Martin; Wolf Reik; Johannes Zuber; Keisuke Kaji; Tamir Chandra; Jesús Gil

Expression of the transcription factors OCT4, SOX2, KLF4, and cMYC (OSKM) reprograms somatic cells into induced pluripotent stem cells (iPSCs). Reprogramming is a slow and inefficient process, suggesting the presence of safeguarding mechanisms that counteract cell fate conversion. One such mechanism is senescence. To identify modulators of reprogramming-induced senescence, we performed a genome-wide shRNA screen in primary human fibroblasts expressing OSKM. In the screen, we identified novel mediators of OSKM-induced senescence and validated previously implicated genes such as CDKN1A We developed an innovative approach that integrates single-cell RNA sequencing (scRNA-seq) with the shRNA screen to investigate the mechanism of action of the identified candidates. Our data unveiled regulation of senescence as a novel way by which mechanistic target of rapamycin (mTOR) influences reprogramming. On one hand, mTOR inhibition blunts the induction of cyclin-dependent kinase (CDK) inhibitors (CDKIs), including p16INK4a, p21CIP1, and p15INK4b, preventing OSKM-induced senescence. On the other hand, inhibition of mTOR blunts the senescence-associated secretory phenotype (SASP), which itself favors reprogramming. These contrasting actions contribute to explain the complex effect that mTOR has on reprogramming. Overall, our study highlights the advantage of combining functional screens with scRNA-seq to accelerate the discovery of pathways controlling complex phenotypes.


Cancer Cell | 2018

PTBP1-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells

Athena Georgilis; Sabrina Klotz; Christopher J. Hanley; Nicolás Herranz; Benedikt Weirich; Beatriz Morancho; Ana Carolina Leote; Luana D'Artista; Suchira Gallage; Marco Seehawer; Thomas Carroll; Gopuraja Dharmalingam; Keng Boon Wee; Marco Mellone; Joaquim Pombo; Danijela Heide; Ernesto Guccione; J. Arribas; Nuno L. Barbosa-Morais; Mathias Heikenwalder; Gareth J. Thomas; Lars Zender; Jesús Gil

Summary Oncogene-induced senescence is a potent tumor-suppressive response. Paradoxically, senescence also induces an inflammatory secretome that promotes carcinogenesis and age-related pathologies. Consequently, the senescence-associated secretory phenotype (SASP) is a potential therapeutic target. Here, we describe an RNAi screen for SASP regulators. We identified 50 druggable targets whose knockdown suppresses the inflammatory secretome and differentially affects other SASP components. Among the screen candidates was PTBP1. PTBP1 regulates the alternative splicing of genes involved in intracellular trafficking, such as EXOC7, to control the SASP. Inhibition of PTBP1 prevents the pro-tumorigenic effects of the SASP and impairs immune surveillance without increasing the risk of tumorigenesis. In conclusion, our study identifies SASP inhibition as a powerful and safe therapy against inflammation-driven cancer.

Collaboration


Dive into the Gopuraja Dharmalingam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesús Gil

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Banito

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Selina Raguz

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge