Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Goran Ahlsen is active.

Publication


Featured researches published by Goran Ahlsen.


Structure | 2011

The Extracellular Architecture of Adherens Junctions Revealed by Crystal Structures of Type I Cadherins

Oliver J. Harrison; Xiangshu Jin; Soonjin Hong; Fabiana Bahna; Goran Ahlsen; Julia Brasch; Yinghao Wu; Jeremie Vendome; Klara Felsovalyi; Cheri M. Hampton; Regina B. Troyanovsky; Avinoam Ben-Shaul; Joachim Frank; Sergey M. Troyanovsky; Lawrence Shapiro; Barry Honig

Adherens junctions, which play a central role in intercellular adhesion, comprise clusters of type I classical cadherins that bind via extracellular domains extended from opposing cell surfaces. We show that a molecular layer seen in crystal structures of E- and N-cadherin ectodomains reported here and in a previous C-cadherin structure corresponds to the extracellular architecture of adherens junctions. In all three ectodomain crystals, cadherins dimerize through a trans adhesive interface and are connected by a second, cis, interface. Assemblies formed by E-cadherin ectodomains coated on liposomes also appear to adopt this structure. Fluorescent imaging of junctions formed from wild-type and mutant E-cadherins in cultured cells confirm conclusions derived from structural evidence. Mutations that interfere with the trans interface ablate adhesion, whereas cis interface mutations disrupt stable junction formation. Our observations are consistent with a model for junction assembly involving strong trans and weak cis interactions localized in the ectodomain.


Nature Structural & Molecular Biology | 2015

Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env

Young Do Kwon; Marie Pancera; Priyamvada Acharya; Ivelin S. Georgiev; Emma T. Crooks; Jason Gorman; M. Gordon Joyce; Xiaochu Ma; Sandeep Narpala; Cinque Soto; Daniel S. Terry; Yongping Yang; Tongqing Zhou; Goran Ahlsen; Robert T. Bailer; Michael Chambers; Gwo Yu Chuang; Nicole A. Doria-Rose; Aliaksandr Druz; Mark A. Hallen; Adam Harned; Tatsiana Kirys; Mark K. Louder; Sijy O'Dell; Gilad Ofek; Keiko Osawa; Madhu Prabhakaran; Mallika Sastry; Guillaume Stewart-Jones; Jonathan Stuckey

As the sole viral antigen on the HIV-1–virion surface, trimeric Env is a focus of vaccine efforts. Here we present the structure of the ligand-free HIV-1–Env trimer, fix its conformation and determine its receptor interactions. Epitope analyses revealed trimeric ligand-free Env to be structurally compatible with broadly neutralizing antibodies but not poorly neutralizing ones. We coupled these compatibility considerations with binding antigenicity to engineer conformationally fixed Envs, including a 201C 433C (DS) variant specifically recognized by broadly neutralizing antibodies. DS-Env retained nanomolar affinity for the CD4 receptor, with which it formed an asymmetric intermediate: a closed trimer bound by a single CD4 without the typical antigenic hallmarks of CD4 induction. Antigenicity-guided structural design can thus be used both to delineate mechanism and to fix conformation, with DS-Env trimers in virus-like-particle and soluble formats providing a new generation of vaccine antigens.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Linking molecular affinity and cellular specificity in cadherin-mediated adhesion

Phini S Katsamba; Kilpatrick J Carroll; Goran Ahlsen; Fabiana Bahna; Jeremie Vendome; Shoshana Posy; M. Rajebhosale; Stephen R. Price; Thomas M. Jessell; Avinoam Ben-Shaul; Lawrence Shapiro; Barry Honig

Many cell–cell adhesive events are mediated by the dimerization of cadherin proteins presented on apposing cell surfaces. Cadherin-mediated processes play a central role in the sorting of cells into separate tissues in vivo, but in vitro assays aimed at mimicking this behavior have yielded inconclusive results. In some cases, cells that express different cadherins exhibit homotypic cell sorting, forming separate cell aggregates, whereas in other cases, intermixed aggregates are formed. A third pattern is observed for mixtures of cells expressing either N- or E-cadherin, which form distinct homotypic aggregates that adhere to one another through a heterotypic interface. The molecular basis of cadherin-mediated cell patterning phenomena is poorly understood, in part because the relationship between cellular adhesive specificity and intermolecular binding free energies has not been established. To clarify this issue, we have measured the dimerization affinities of N-cadherin and E-cadherin. These proteins are similar in sequence and structure, yet are able to mediate homotypic cell patterning behavior in a variety of tissues. N-cadherin is found to form homodimers with higher affinity than does E-cadherin and, unexpectedly, the N/E-cadherin heterophilic binding affinity is intermediate in strength between the 2 homophilic affinities. We can account for observed cell aggregation behaviors by using a theoretical framework that establishes a connection between molecular affinities and cell–cell adhesive specificity. Our results illustrate how graded differences between different homophilic and heterophilic cadherin dimerizaton affinities can result in homotypic cell patterning and, more generally, show how proteins that are closely related can, nevertheless, be responsible for highly specific cellular adhesive behavior.


Nature Structural & Molecular Biology | 2010

T-cadherin structures reveal a novel adhesive binding mechanism

Carlo Ciatto; Fabiana Bahna; Niccolò Zampieri; Harper C VanSteenhouse; Phini S Katsamba; Goran Ahlsen; Oliver J. Harrison; Julia Brasch; Xiangshu Jin; Shoshana Posy; Jeremie Vendome; Barbara Ranscht; Thomas M. Jessell; Barry Honig; Lawrence Shapiro

Vertebrate genomes encode 19 classical cadherins and about 100 nonclassical cadherins. Adhesion by classical cadherins depends on binding interactions in their N-terminal EC1 domains, which swap N-terminal β-strands between partner molecules from apposing cells. However, strand-swapping sequence signatures are absent from nonclassical cadherins, raising the question of how these proteins function in adhesion. Here, we show that T-cadherin, a glycosylphosphatidylinositol (GPI)-anchored cadherin, forms dimers through an alternative nonswapped interface near the EC1-EC2 calcium-binding sites. Mutations within this interface ablate the adhesive capacity of T-cadherin. These nonadhesive T-cadherin mutants also lose the ability to regulate neurite outgrowth from T-cadherin–expressing neurons. Our findings reveal the likely molecular architecture of the T-cadherin homophilic interface and its requirement for axon outgrowth regulation. The adhesive binding mode used by T-cadherin may also be used by other nonclassical cadherins.


Nature Structural & Molecular Biology | 2012

Nectin ectodomain structures reveal a canonical adhesive interface.

Oliver J. Harrison; Jeremie Vendome; Julia Brasch; Xiangshu Jin; Soonjin Hong; Phinikoula S. Katsamba; Goran Ahlsen; Regina B. Troyanovsky; Sergey M. Troyanovsky; Barry Honig; Lawrence Shapiro

Nectins are immunoglobulin superfamily glycoproteins that mediate intercellular adhesion in many vertebrate tissues. Homophilic and heterophilic interactions between nectin family members help mediate tissue patterning. We determined the homophilic binding affinities and heterophilic specificities of all four nectins and the related protein nectin-like 5 (Necl-5) from human and mouse, revealing a range of homophilic interaction strengths and a defined heterophilic specificity pattern. To understand the molecular basis of their adhesion and specificity, we determined the crystal structures of natively glycosylated full ectodomains or adhesive fragments of all four nectins and Necl-5. All of the crystal structures revealed dimeric nectins bound through a stereotyped interface that was previously proposed to represent a cis dimer. However, conservation of this interface and the results of targeted cross-linking experiments showed that this dimer probably represents the adhesive trans interaction. The structure of the dimer provides a simple molecular explanation for the adhesive binding specificity of nectins.


Neuron | 2010

Splice Form Dependence of β-Neurexin/Neuroligin Binding Interactions

Jesko Koehnke; Phinikoula S. Katsamba; Goran Ahlsen; Fabiana Bahna; Jeremie Vendome; Barry Honig; Lawrence Shapiro; Xiangshu Jin

Alternatively spliced beta-neurexins (beta-NRXs) and neuroligins (NLs) are thought to have distinct extracellular binding affinities, potentially providing a beta-NRX/NL synaptic recognition code. We utilized surface plasmon resonance to measure binding affinities between all combinations of alternatively spliced beta-NRX 1-3 and NL 1-3 ectodomains. Binding was observed for all beta-NRX/NL pairs. The presence of the NL1 B splice insertion lowers beta-NRX binding affinity by approximately 2-fold, while beta-NRX splice insertion 4 has small effects that do not synergize with NL splicing. New structures of glycosylated beta-NRXs 1 and 2 containing splice insertion 4 reveal that the insertion forms a new beta strand that replaces the beta10 strand, leaving the NL binding site intact. This helps to explain the limited effect of splice insert 4 on NRX/NL binding affinities. These results provide new structural insights and quantitative binding information to help determine whether and how splice isoform choice plays a role in beta-NRX/NL-mediated synaptic recognition.


Cell | 2015

Molecular Logic of Neuronal Self-Recognition through Protocadherin Domain Interactions.

Rotem Rubinstein; Chan Aye Thu; Kerry Goodman; Holly N. Wolcott; Fabiana Bahna; Seetha Mannepalli; Goran Ahlsen; Maxime Chevee; Adnan Halim; Henrik Clausen; Tom Maniatis; Lawrence Shapiro; Barry Honig

Self-avoidance, a process preventing interactions of axons and dendrites from the same neuron during development, is mediated in vertebrates through the stochastic single-neuron expression of clustered protocadherin protein isoforms. Extracellular cadherin (EC) domains mediate isoform-specific homophilic binding between cells, conferring cell recognition through a poorly understood mechanism. Here, we report crystal structures for the EC1-EC3 domain regions from four protocadherin isoforms representing the α, β, and γ subfamilies. All are rod shaped and monomeric in solution. Biophysical measurements, cell aggregation assays, and computational docking reveal that trans binding between cells depends on the EC1-EC4 domains, which interact in an antiparallel orientation. We also show that the EC6 domains are required for the formation of cis-dimers. Overall, our results are consistent with a model in which protocadherin cis-dimers engage in a head-to-tail interaction between EC1-EC4 domains from apposed cell surfaces, possibly forming a zipper-like protein assembly, and thus providing a size-dependent self-recognition mechanism.


Structure | 2008

Dynamic Properties of a Type II Cadherin Adhesive Domain: Implications for the Mechanism of Strand-Swapping of Classical Cadherins

Vesselin Z. Miloushev; Fabiana Bahna; Carlo Ciatto; Goran Ahlsen; Barry Honig; Lawrence Shapiro; Arthur G. Palmer

Cadherin-mediated cell adhesion is achieved through dimerization of cadherin N-terminal extracellular (EC1) domains presented from apposed cells. The dimer state is formed by exchange of N-terminal beta strands and insertion of conserved tryptophan indole side chains from one monomer into hydrophobic acceptor pockets of the partner molecule. The present work characterizes individual monomer and dimer states and the monomer-dimer equilibrium of the mouse Type II cadherin-8 EC1 domain using NMR spectroscopy. Limited picosecond-to-nanosecond timescale dynamics of the tryptophan indole moieties for both monomer and dimer states are consistent with well-ordered packing of the N-terminal beta strands intramolecularly and intermolecularly, respectively. However, pronounced microsecond-to-millisecond timescale dynamics of the side chains are observed for the monomer but not the dimer state, suggesting that monomers transiently sample configurations in which the indole moieties are exposed. The results suggest possible kinetic mechanisms for EC1 dimerization.


Journal of Molecular Biology | 2011

Structure and binding mechanism of vascular endothelial cadherin: a divergent classical cadherin.

Julia Brasch; Oliver J. Harrison; Goran Ahlsen; Stewart M. Carnally; Robert M. Henderson; Barry Honig; Lawrence Shapiro

Vascular endothelial cadherin (VE-cadherin), a divergent member of the type II classical cadherin family of cell adhesion proteins, mediates homophilic adhesion in the vascular endothelium. Previous investigations with a bacterially produced protein suggested that VE-cadherin forms cell surface trimers that bind between apposed cells to form hexamers. Here we report studies of mammalian-produced VE-cadherin ectodomains suggesting that, like other classical cadherins, VE-cadherin forms adhesive trans dimers between monomers located on opposing cell surfaces. Trimerization of the bacterially produced protein appears to be an artifact that arises from a lack of glycosylation. We also present the 2.1-Å-resolution crystal structure of the VE-cadherin EC1-2 adhesive region, which reveals homodimerization via the strand-swap mechanism common to classical cadherins. In common with type II cadherins, strand-swap binding involves two tryptophan anchor residues, but the adhesive interface resembles type I cadherins in that VE-cadherin does not form a large nonswapped hydrophobic surface. Thus, VE-cadherin is an outlier among classical cadherins, with characteristics of both type I and type II subfamilies.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Structural basis of adhesive binding by desmocollins and desmogleins.

Oliver J. Harrison; Julia Brasch; Gorka Lasso; Phinikoula S. Katsamba; Goran Ahlsen; Barry Honig; Lawrence Shapiro

Significance Desmosomes are crucial for the integrity of tissues that undergo mechanical stress. Their intercellular attachments are assembled from desmogleins (Dsgs) and desmocollins (Dscs), two families of specialized cadherins whose structures and interactions have remained uncharacterized. Our study demonstrates family-wise heterophilic interactions between these proteins, with all Dsgs forming adhesive dimers with all Dscs. Crystal structures of ectodomains from Dsg2 and Dsg3 and from Dsc1 and Dsc2 show binding through a strand-swap mechanism similar to that of classical cadherins, which we show underlie heterophilic interactions. Conserved compatibly charged amino acids in the interfaces promote heterophilic Dsg:Dsc interactions. We show that Dsg:Dsc heterodimers represent the fundamental adhesive unit of desmosomes and provide a structural framework for understanding the extracellular assembly of desmosomes. Desmosomes are intercellular adhesive junctions that impart strength to vertebrate tissues. Their dense, ordered intercellular attachments are formed by desmogleins (Dsgs) and desmocollins (Dscs), but the nature of trans-cellular interactions between these specialized cadherins is unclear. Here, using solution biophysics and coated-bead aggregation experiments, we demonstrate family-wise heterophilic specificity: All Dsgs form adhesive dimers with all Dscs, with affinities characteristic of each Dsg:Dsc pair. Crystal structures of ectodomains from Dsg2 and Dsg3 and from Dsc1 and Dsc2 show binding through a strand-swap mechanism similar to that of homophilic classical cadherins. However, conserved charged amino acids inhibit Dsg:Dsg and Dsc:Dsc interactions by same-charge repulsion and promote heterophilic Dsg:Dsc interactions through opposite-charge attraction. These findings show that Dsg:Dsc heterodimers represent the fundamental adhesive unit of desmosomes and provide a structural framework for understanding desmosome assembly.

Collaboration


Dive into the Goran Ahlsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry Honig

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge