Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gordon C. Shore is active.

Publication


Featured researches published by Gordon C. Shore.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis

Mai Nguyen; Richard C. Marcellus; Anne Roulston; Mark A. Watson; Lucile Serfass; S. R. Murthy Madiraju; Daniel Goulet; Jean Viallet; Laurent Belec; Xavier Billot; Stephane Acoca; Enrico O. Purisima; Adrian Wiegmans; Leonie A. Cluse; Ricky W. Johnstone; Pierre Beauparlant; Gordon C. Shore

Elevated expression of members of the BCL-2 pro-survival family of proteins can confer resistance to apoptosis in cancer cells. Small molecule obatoclax (GX15-070), which is predicted to occupy a hydrophobic pocket within the BH3 binding groove of BCL-2, antagonizes these members and induces apoptosis, dependent on BAX and BAK. Reconstitution in yeast confirmed that obatoclax acts on the pathway and overcomes BCL-2-, BCL-XL-, BCL-w-, and MCL-1-mediated resistance to BAX or BAK. The compound potently interfered with the direct interaction between MCL-1 and BAK in intact mitochondrial outer membrane and inhibited the association between MCL-1 and BAK in intact cells. MCL-1 has been shown to confer resistance to the BCL-2/BCL-XL/BCL-w-selective antagonist ABT-737 and to the proteasome inhibitor bortezomib. In both cases, this resistance was overcome by obatoclax. These findings support a rational clinical development opportunity for the compound in cancer indications or treatments where MCL-1 contributes to resistance to cell killing.


Journal of Cell Biology | 2003

Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol

David G. Breckenridge; Marina Stojanovic; Richard C. Marcellus; Gordon C. Shore

Stimulation of cell surface death receptors activates caspase-8, which targets a limited number of substrates including BAP31, an integral membrane protein of the endoplasmic reticulum (ER). Recently, we reported that a caspase-resistant BAP31 mutant inhibited several features of Fas-induced apoptosis, including the release of cytochrome c (cyt.c) from mitochondria (Nguyen, M., D.G. Breckenridge, A. Ducret, and G.C. Shore. 2000. Mol. Cell. Biol. 20:6731–6740), implicating ER-mitochondria crosstalk in this pathway. Here, we report that the p20 caspase cleavage fragment of BAP31 can direct pro-apoptotic signals between the ER and mitochondria. Adenoviral expression of p20 caused an early release of Ca2+ from the ER, concomitant uptake of Ca2+ into mitochondria, and mitochondrial recruitment of Drp1, a dynamin-related protein that mediates scission of the outer mitochondrial membrane, resulting in dramatic fragmentation and fission of the mitochondrial network. Inhibition of Drp1 or ER-mitochondrial Ca2+ signaling prevented p20-induced fission of mitochondria. p20 strongly sensitized mitochondria to caspase-8–induced cyt.c release, whereas prolonged expression of p20 on its own ultimately induced caspase activation and apoptosis through the mitochondrial apoptosome stress pathway. Therefore, caspase-8 cleavage of BAP31 at the ER stimulates Ca2+-dependent mitochondrial fission, enhancing the release of cyt.c in response to this initiator caspase.


The EMBO Journal | 2005

Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis

Marc Germain; Jaigi P Mathai; Heidi M. McBride; Gordon C. Shore

The endoplasmic reticulum (ER) can elicit proapoptotic signalling that results in transmission of Ca2+ to the mitochondria, which in turn stimulates recruitment of the fission enzyme DRP1 to the surface of the organelle. Here, we show that BH3‐only BIK activates this pathway at the ER in intact cells, resulting in mitochondrial fragmentation but little release of cytochrome c to the cytosol. The BIK‐induced transformations in mitochondria are dynamic in nature and involve DRP1‐dependent remodelling and opening of cristae, where the major stores of cytochrome c reside. This novel function for DRP1 is distinct from its recognized role in regulating mitochondrial fission. Selective permeabilization of the outer membrane with digitonin confirmed that BIK stimulation results in mobilization of intramitochondrial cytochrome c. Of note, BIK can cooperate with a weak BH3‐only protein that targets mitochondria, such as NOXA, to activate BAX by a mechanism that is independent of DRP1 enzyme activity. When expressed together, BIK and NOXA cause rapid release of mobilized cytochrome c and activation of caspases.


Oncogene | 2008

The endoplasmic reticulum in apoptosis and autophagy: role of the BCL-2 protein family

H M Heath-Engel; N C Chang; Gordon C. Shore

Apoptosis is essential for normal development and maintenance of homeostasis, and disruption of apoptotic pathways is associated with multiple disease states, including cancer. Although initially identified as central regulators of apoptosis at the level of mitochondria, an important role for BCL-2 proteins at the endoplasmic reticulum is now well established. Signaling pathways emanating from the endoplasmic reticulum (ER) are involved in apoptosis initiated by stimuli as diverse as ER stress, oncogene expression, death receptor (DR) ligation and oxidative stress, and the BCL-2 family is almost invariably implicated in the regulation of these pathways. This also includes Ca2+-mediated cross talk between ER and mitochondria during apoptosis, which contributes to the mitochondrial dynamics that support the core mitochondrial apoptosis pathway. In addition to the regulation of apoptosis, BCL-2 proteins at the ER also regulate autophagy, a survival pathway that limits metabolic stress, genomic instability and tumorigenesis. In cases where apoptosis is inhibited, however, prolonged autophagy can lead to cell death. This review provides an overview of ER-associated apoptotic and autophagic signaling pathways, with particular emphasis on the BCL-2 family proteins.


FEBS Letters | 1998

Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy

David J. Granville; Chris M Carthy; Huijun Jiang; Gordon C. Shore; Bruce M. McManus; David W. C. Hunt

Photodynamic therapy (PDT) is a clinical approach that utilizes light‐activated drugs for the treatment of a variety of pathologic conditions. The initiating events of PDT‐induced apoptosis are poorly defined. It has been shown for other pro‐apoptotic stimuli that the integral endoplasmic reticulum protein Bap31 is cleaved by caspases 1 and 8, but not by caspase‐3. Further, a 20 kDa Bap31 cleavage fragment is generated which can induce apoptosis. In the current report, we sought to determine whether Bap31 cleavage and generation of p20 is an early event in PDT‐induced apoptosis. The mitochondrial release of cytochrome c, involvement of caspases 1, 2, 3, 4, 6, 7, 8, and 10 and the status of several known caspase substrates, including Bap31, were evaluated in PDT‐treated HeLa cells. Cytochrome c appeared in the cytosol immediately following light activation of the photosensitizer benzoporphyrin derivative monoacid ring A. Activation of caspases 3, 6, 7, and 8 was evident within 1–2 h post PDT. Processing of caspases 1, 2, 4, and 10 was not observed. Cleavage of Bap31 was observed at 2–3 h post PDT. The caspase‐3 inhibitor DEVD‐fmk blocked caspase‐8 and Bap31 cleavage suggesting that caspase‐8 and Bap31 processing occur downstream of caspase‐3 activation in PDT‐induced apoptosis. These results demonstrate that release of mitochondrial cytochrome c into the cytoplasm is a primary event following PDT, preceding caspase activation and cleavage of Bap31. To our knowledge, this is the first example of a chemotherapeutic agent inducing caspase‐8 activation and demonstrates that caspase‐8 activation can occur after cytochrome c release.


Molecular Cell | 2006

The X-ray structure of a BAK homodimer reveals an inhibitory zinc binding site.

Tudor Moldoveanu; Qian Liu; Ante Tocilj; Mark A. Watson; Gordon C. Shore; Kalle Gehring

BAK/BAX-mediated mitochondrial outer-membrane permeabilization (MOMP) drives cell death during development and tissue homeostasis from zebrafish to humans. In most cancers, this pathway is inhibited by BCL-2 family antiapoptotic members, which bind and block the action of proapoptotic BCL proteins. We report the 1.5 A crystal structure of calpain-proteolysed BAK, cBAK, to reveal a zinc binding site that regulates its activity via homodimerization. cBAK contains an occluded BH3 peptide binding pocket that binds a BID BH3 peptide only weakly . Nonetheless, cBAK requires activation by truncated BID to induce cytochrome c release in mitochondria isolated from bak/bax double-knockout mouse embryonic fibroblasts. The BAK-mediated MOMP is inhibited by low micromolar zinc levels. This inhibition is alleviated by mutation of the zinc-coordination site in BAK. Our results link directly the antiapoptotic effects of zinc to BAK.


Journal of Biological Chemistry | 2005

BH3-only BIK Regulates BAX,BAK-dependent Release of Ca2+ from Endoplasmic Reticulum Stores and Mitochondrial Apoptosis during Stress-induced Cell Death

Jaigi P Mathai; Marc Germain; Gordon C. Shore

BIK, a pro-apoptotic BH3-only member of the BCL-2 family, targets the membrane of the endoplasmic reticulum (ER). It is induced in human cells in response to several stress stimuli, including genotoxic stress (radiation, doxorubicin) and overexpression of E1A or p53 but not by ER stress pathways resulting from protein malfolding. BIK initiates an early release of Ca2+ from ER upstream of the activation of effector caspases. Release of the mobile ER Ca2+ stores in baby mouse kidney cells doubly deficient in BAX and BAK, on the other hand, is resistant to BIK but is sensitive to ectopic BAK. Over-expression of p53 stimulates recruitment of BAK to the ER, and both its recruitment and assembly into higher order structures is inhibited by BIK small interfering RNA. Employing small interfering RNA knockdowns, we also demonstrated that release of ER Ca2+ and mitochondrial apoptosis in human epithelial cells requires BIK and that a Ca2+-regulated target, the dynamin-related GTPase DRP1, is involved in p53-induced mitochondrial fission and release of cytochrome c to the cytosol. Endogenous cellular BIK, therefore, regulates a BAX,BAK-dependent ER pathway that contributes to mitochondrial apoptosis.


The EMBO Journal | 2010

Antagonism of Beclin 1‐dependent autophagy by BCL‐2 at the endoplasmic reticulum requires NAF‐1

Natasha C. Chang; Mai Nguyen; Marc Germain; Gordon C. Shore

In addition to mitochondria, BCL‐2 is located at the endoplasmic reticulum (ER) where it is a constituent of several distinct complexes. Here, we identify the BCL‐2‐interacting protein at the ER, nutrient‐deprivation autophagy factor‐1 (NAF‐1)—a bitopic integral membrane protein whose defective expression underlies the aetiology of the neurodegenerative disorder Wolfram syndrome 2 (WFS2). NAF‐1 contains a two iron–two sulphur coordinating domain within its cytosolic region, which is necessary, but not sufficient for interaction with BCL‐2. NAF‐1 is displaced from BCL‐2 by the ER‐restricted BH3‐only protein BIK and contributes to regulation of BIK‐initiated autophagy, but not BIK‐dependent activation of caspases. Similar to BCL‐2, NAF‐1 is found in association with the inositol 1,4,5‐triphosphate receptor and is required for BCL‐2‐mediated depression of ER Ca2+ stores. During nutrient deprivation as a physiological stimulus of autophagy, BCL‐2 is known to function through inhibition of the autophagy effector and tumour suppressor Beclin 1. NAF‐1 is required in this pathway for BCL‐2 at the ER to functionally antagonize Beclin 1‐dependent autophagy. Thus, NAF‐1 is a BCL‐2‐associated co‐factor that targets BCL‐2 for antagonism of the autophagy pathway at the ER.


The EMBO Journal | 2006

Dissociating the dual roles of apoptosis‐inducing factor in maintaining mitochondrial structure and apoptosis

Eric C. Cheung; Nicholas Joza; Nancy A. E. Steenaart; Kelly A. McClellan; Margaret Neuspiel; Stephen McNamara; Jason G. MacLaurin; Peter Rippstein; David S. Park; Gordon C. Shore; Heidi M. McBride; Josef M. Penninger; Ruth S. Slack

The mitochondrial protein apoptosis‐inducing factor (AIF) translocates to the nucleus and induces apoptosis. Recent studies, however, have indicated the importance of AIF for survival in mitochondria. In the absence of a means to dissociate these two functions, the precise roles of AIF remain unclear. Here, we dissociate these dual roles using mitochondrially anchored AIF that cannot be released during apoptosis. Forebrain‐specific AIF null (tel. AifΔ) mice have defective cortical development and reduced neuronal survival due to defects in mitochondrial respiration. Mitochondria in AIF deficient neurons are fragmented with aberrant cristae, indicating a novel role of AIF in controlling mitochondrial structure. While tel. AifΔ Apaf1−/− neurons remain sensitive to DNA damage, mitochondrially anchored AIF expression in these cells significantly enhanced survival. AIF mutants that cannot translocate into nucleus failed to induce cell death. These results indicate that the proapoptotic role of AIF can be uncoupled from its physiological function. Cell death induced by AIF is through its proapoptotic activity once it is translocated to the nucleus, not due to the loss of AIF from the mitochondria.


Molecular and Cellular Biology | 2009

The Small Molecule GMX1778 Is a Potent Inhibitor of NAD+ Biosynthesis: Strategy for Enhanced Therapy in Nicotinic Acid Phosphoribosyltransferase 1-Deficient Tumors

Mark A. Watson; Anne Roulston; Laurent Bélec; Xavier Billot; Richard C. Marcellus; Dominique Bédard; Cynthia Bernier; Stéphane Branchaud; Helen S. L. Chan; Kenza Dairi; Daniel Goulet; Michel-Olivier Gratton; Henady Isakau; Anne Jang; Abdelkrim Khadir; Elizabeth Koch; Manon Lavoie; Michael Lawless; Mai Nguyen; Denis Paquette; Émilie Turcotte; Alvin Berger; Matthew W. Mitchell; Gordon C. Shore; Pierre Beauparlant

ABSTRACT GMX1777 is a prodrug of the small molecule GMX1778, currently in phase I clinical trials for the treatment of cancer. We describe findings indicating that GMX1778 is a potent and specific inhibitor of the NAD+ biosynthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT). Cancer cells have a very high rate of NAD+ turnover, which makes NAD+ modulation an attractive target for anticancer therapy. Selective inhibition by GMX1778 of NAMPT blocks the production of NAD+ and results in tumor cell death. Furthermore, GMX1778 is phosphoribosylated by NAMPT, which increases its cellular retention. The cytotoxicity of GMX1778 can be bypassed with exogenous nicotinic acid (NA), which permits NAD+ repletion via NA phosphoribosyltransferase 1 (NAPRT1). The cytotoxicity of GMX1778 in cells with NAPRT1 deficiency, however, cannot be rescued by NA. Analyses of NAPRT1 mRNA and protein levels in cell lines and primary tumor tissue indicate that high frequencies of glioblastomas, neuroblastomas, and sarcomas are deficient in NAPRT1 and not susceptible to rescue with NA. As a result, the therapeutic index of GMX1777 can be widended in the treatment animals bearing NAPRT1-deficient tumors by coadministration with NA. This provides the rationale for a novel therapeutic approach for the use of GMX1777 in the treatment of human cancers.

Collaboration


Dive into the Gordon C. Shore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heidi M. McBride

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge