Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard C. Marcellus is active.

Publication


Featured researches published by Richard C. Marcellus.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis

Mai Nguyen; Richard C. Marcellus; Anne Roulston; Mark A. Watson; Lucile Serfass; S. R. Murthy Madiraju; Daniel Goulet; Jean Viallet; Laurent Belec; Xavier Billot; Stephane Acoca; Enrico O. Purisima; Adrian Wiegmans; Leonie A. Cluse; Ricky W. Johnstone; Pierre Beauparlant; Gordon C. Shore

Elevated expression of members of the BCL-2 pro-survival family of proteins can confer resistance to apoptosis in cancer cells. Small molecule obatoclax (GX15-070), which is predicted to occupy a hydrophobic pocket within the BH3 binding groove of BCL-2, antagonizes these members and induces apoptosis, dependent on BAX and BAK. Reconstitution in yeast confirmed that obatoclax acts on the pathway and overcomes BCL-2-, BCL-XL-, BCL-w-, and MCL-1-mediated resistance to BAX or BAK. The compound potently interfered with the direct interaction between MCL-1 and BAK in intact mitochondrial outer membrane and inhibited the association between MCL-1 and BAK in intact cells. MCL-1 has been shown to confer resistance to the BCL-2/BCL-XL/BCL-w-selective antagonist ABT-737 and to the proteasome inhibitor bortezomib. In both cases, this resistance was overcome by obatoclax. These findings support a rational clinical development opportunity for the compound in cancer indications or treatments where MCL-1 contributes to resistance to cell killing.


Journal of Cell Biology | 2003

Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol

David G. Breckenridge; Marina Stojanovic; Richard C. Marcellus; Gordon C. Shore

Stimulation of cell surface death receptors activates caspase-8, which targets a limited number of substrates including BAP31, an integral membrane protein of the endoplasmic reticulum (ER). Recently, we reported that a caspase-resistant BAP31 mutant inhibited several features of Fas-induced apoptosis, including the release of cytochrome c (cyt.c) from mitochondria (Nguyen, M., D.G. Breckenridge, A. Ducret, and G.C. Shore. 2000. Mol. Cell. Biol. 20:6731–6740), implicating ER-mitochondria crosstalk in this pathway. Here, we report that the p20 caspase cleavage fragment of BAP31 can direct pro-apoptotic signals between the ER and mitochondria. Adenoviral expression of p20 caused an early release of Ca2+ from the ER, concomitant uptake of Ca2+ into mitochondria, and mitochondrial recruitment of Drp1, a dynamin-related protein that mediates scission of the outer mitochondrial membrane, resulting in dramatic fragmentation and fission of the mitochondrial network. Inhibition of Drp1 or ER-mitochondrial Ca2+ signaling prevented p20-induced fission of mitochondria. p20 strongly sensitized mitochondria to caspase-8–induced cyt.c release, whereas prolonged expression of p20 on its own ultimately induced caspase activation and apoptosis through the mitochondrial apoptosome stress pathway. Therefore, caspase-8 cleavage of BAP31 at the ER stimulates Ca2+-dependent mitochondrial fission, enhancing the release of cyt.c in response to this initiator caspase.


Molecular and Cellular Biology | 2009

The Small Molecule GMX1778 Is a Potent Inhibitor of NAD+ Biosynthesis: Strategy for Enhanced Therapy in Nicotinic Acid Phosphoribosyltransferase 1-Deficient Tumors

Mark A. Watson; Anne Roulston; Laurent Bélec; Xavier Billot; Richard C. Marcellus; Dominique Bédard; Cynthia Bernier; Stéphane Branchaud; Helen S. L. Chan; Kenza Dairi; Daniel Goulet; Michel-Olivier Gratton; Henady Isakau; Anne Jang; Abdelkrim Khadir; Elizabeth Koch; Manon Lavoie; Michael Lawless; Mai Nguyen; Denis Paquette; Émilie Turcotte; Alvin Berger; Matthew W. Mitchell; Gordon C. Shore; Pierre Beauparlant

ABSTRACT GMX1777 is a prodrug of the small molecule GMX1778, currently in phase I clinical trials for the treatment of cancer. We describe findings indicating that GMX1778 is a potent and specific inhibitor of the NAD+ biosynthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT). Cancer cells have a very high rate of NAD+ turnover, which makes NAD+ modulation an attractive target for anticancer therapy. Selective inhibition by GMX1778 of NAMPT blocks the production of NAD+ and results in tumor cell death. Furthermore, GMX1778 is phosphoribosylated by NAMPT, which increases its cellular retention. The cytotoxicity of GMX1778 can be bypassed with exogenous nicotinic acid (NA), which permits NAD+ repletion via NA phosphoribosyltransferase 1 (NAPRT1). The cytotoxicity of GMX1778 in cells with NAPRT1 deficiency, however, cannot be rescued by NA. Analyses of NAPRT1 mRNA and protein levels in cell lines and primary tumor tissue indicate that high frequencies of glioblastomas, neuroblastomas, and sarcomas are deficient in NAPRT1 and not susceptible to rescue with NA. As a result, the therapeutic index of GMX1777 can be widended in the treatment animals bearing NAPRT1-deficient tumors by coadministration with NA. This provides the rationale for a novel therapeutic approach for the use of GMX1777 in the treatment of human cancers.


Oncogene | 2002

Induction and endoplasmic reticulum location of BIK/NBK in response to apoptotic signaling by E1A and p53

Jaigi P Mathai; Marc Germain; Richard C. Marcellus; Gordon C. Shore

A DNA microarray analysis identified the BH3-only BCL-2 family member, BIK/NBK, as a transcript that is upregulated during induction of apoptosis by oncogenic E1A. E1A depended on wild-type p53 to induce BIK and activate the death program. Further, p53 independently induced BIK RNA and protein, and BIK alone stimulated cell death in p53-null cells, dependent on the activation of caspases. BIK function, however, was abrogated by a disabling point mutation within the BH3 domain. Collectively, these results argue that BIK is a downstream apoptotic effector of p53 in response to a physiological p53-mediated death stimulus provided by E1A. Elevated BCL-2 functioned downstream of p53 and BIK induction to inhibit the E1A death pathway, with the ratio of anti-apoptotic BCL-2 and pro-apoptotic BIK determining cell death or survival in E1A-expressing cells. Cells expressing BCL-2 or treated with the pan caspase inhibitor, zVAD-fmk, allowed accumulation of high levels of cytotoxic BIK compared to control cells. Of note, a significant fraction of either ectopic or endogenous BIK was found associated with the endoplasmic reticulum, suggesting that this organelle, in addition to mitochondria, may be a target of BIK function.


Journal of Virology | 2000

Induction of p53-Independent Apoptosis by the Adenovirus E4orf4 Protein Requires Binding to the Bα Subunit of Protein Phosphatase 2A

Richard C. Marcellus; Helen Chan; Denis Paquette; Sarah W.-L. Thirlwell; Dominique Boivin; Philip E. Branton

ABSTRACT Previous studies have indicated that the E4orf4 protein of human adenovirus type 2 (Ad2) induces p53-independent apoptosis. We believe that this process may play a role in cell death and viral spread at the final stages of productive infection. E4orf4 may also be of therapeutic value in treating some diseases, including cancer, through its ability to induce apoptosis when expressed individually. The only previously identified biochemical function of E4orf4 is its ability to associate with the Bα subunit of protein phosphatase 2A (PP2A). We have used a genetic approach to determine the role of such interactions in E4orf4-induced cell death. E4orf4 deletion mutants were of only limited value, as all were highly defective. We found that E4orf4 proteins from most if not all adenovirus serotypes induced cell death, and thus point mutations were introduced that converted the majority of highly conserved residues to alanines. Such mutants were used to correlate Bα-subunit binding, association with PP2A activity, and cell killing following the transfection of appropriate cDNAs into p53-null H1299 or C33A cells. The results indicated that binding of the Bα subunit is essential for induction of cell death, as every mutant that failed to bind efficiently was totally defective for cell killing. This class of mutations (class I) largely involved residues between amino acids 51 and 89. Almost all E4orf4 mutant proteins that associated with PP2A killed cancer cells at high levels; however, several mutants that associated with significant levels of PP2A were defective for killing (class II). Thus, binding of E4orf4 to PP2A is essential for induction of p53-independent apoptosis, but E4orf4 may possess one or more additional functions required for cell killing.


Oncogene | 2009

The adenovirus E4orf4 protein induces growth arrest and mitotic catastrophe in H1299 human lung carcinoma cells.

Li S; Szymborski A; Marie-Joëlle Miron; Richard C. Marcellus; Binda O; Josée N. Lavoie; Philip E. Branton

The human adenovirus E4orf4 protein, when expressed alone, induces p53-independent death in a wide range of cancer cells. Earlier studies by our groups suggested that although in some cases cell death can be associated with some hallmarks of apoptosis, it is not always affected by caspase inhibitors. Thus it is unlikely that E4orf4-induced cell death occurs uniquely through apoptosis. In the present studies using H1299 human lung carcinoma cells as a model system we found that death is induced in the absence of activation of any of the caspases tested, accumulation of reactive oxygen species, or release of cytochrome c from mitochondria. E4orf4 caused a substantial change in cell morphology, including vigorous membrane blebbing, multiple nuclei in many cells and increased cell volume. Most of these characteristics are not typical of apoptosis, but they are of necrosis. FACS analysis and western blotting for cell cycle markers showed that E4orf4-expressing cells became arrested in G2/M and also accumulated high levels of cyclin E. The presence of significant numbers of tetraploid and polyploid cells and some cells with micronuclei suggested that E4orf4 appears to induce death in these cells through a process resulting from mitotic catastrophe.


Journal of Virology | 2009

The Adenovirus E4orf4 Protein Induces G2/M Arrest and Cell Death by Blocking Protein Phosphatase 2A Activity Regulated by the B55 Subunit

Suiyang Li; Claudine Brignole; Richard C. Marcellus; Sara Thirlwell; Olivier Binda; Monica McQuoid; Danita G. Ashby; Helen S. L. Chan; Zhiying Zhang; Marie-Joëlle Miron; David C. Pallas; Philip E. Branton

ABSTRACT Human adenovirus E4orf4 protein is toxic in human tumor cells. Its interaction with the Bα subunit of protein phosphatase 2A (PP2A) is critical for cell killing; however, the effect of E4orf4 binding is not known. Bα is one of several mammalian B-type regulatory subunits that form PP2A holoenzymes with A and C subunits. Here we show that E4orf4 protein interacts uniquely with B55 family subunits and that cell killing increases with the level of E4orf4 expression. Evidence suggesting that Bα-specific PP2A activity, measured in vitro against phosphoprotein substrates, is reduced by E4orf4 binding was obtained, and two potential B55-specific PP2A substrates, 4E-BP1 and p70S6K, were seen to be hypophosphorylated in vivo following expression of E4orf4. Furthermore, treatment of cells with low levels of the phosphatase inhibitor okadaic acid or coexpression of the PP2A inhibitor I1PP2A enhanced E4orf4-induced cell killing and G2/M arrest significantly. These results suggested that E4orf4 toxicity results from the inhibition of B55-specific PP2A holoenzymes, an idea that was strengthened by an observed growth arrest resulting from treatment of H1299 cells with Bα-specific RNA interference. We believe that E4orf4 induces growth arrest resulting in cell death by reducing the global level of B55-specific PP2A activity, thus preventing the dephosphorylation of B55-specific PP2A substrates, including those involved in cell cycle progression.


ChemBioChem | 2010

An RNA Aptamer That Selectively Inhibits the Enzymatic Activity of Protein Tyrosine Phosphatase 1B in vitro

Brent Townshend; Isabelle Aubry; Richard C. Marcellus; Kalle Gehring; Michel L. Tremblay

SELEX was used to create an RNA aptamer targeted to protein tyrosine phosphatase 1B (PTP1B), an enzyme implicated in type 2 diabetes, breast cancer and obesity. We found an aptamer that strongly inhibits PTP1B in vitro with a Ki of less than 600 pM. This slow‐binding, high‐affinity inhibitor is also highly selective, with no detectable effect on most other tested phosphatases and approximately 300:1 selectivity over the closely related TC‐PTP. Through controlled synthesis of truncated variants of the aptamer, we isolated shorter forms that inhibit PTP1B. We also investigated various single‐nucleotide modifications to probe their effects on the aptamers secondary structure and inhibition properties. This family of aptamers represents an exciting option for the development of lead nucleotide‐based compounds in combating several human cancers and metabolic diseases.


Journal of General Virology | 1993

Role of phosphorylation near the amino terminus of adenovirus type 5 early region 1A proteins

Daniel J. Dumont; Richard C. Marcellus; Stanley T. Bayley; Philip E. Branton

Human adenovirus early region 1A (E1A) proteins act as transcriptional regulators and function in the control of DNA synthesis and cell transformation. Little is known about how these viral products are functionally regulated. E1A proteins of adenovirus serotype 5 (Ad5) are phosphorylated at several serine residues and previous studies had indicated that both Ser-89 and Ser-219 are substrates for one or more of the cdc2 family of cell cycle kinases. A second residue near the amino terminus, Ser-96, may also be a site. Although phosphorylation of Ser-89 causes a major shift in gel mobility, the effect on E1A biological activity is unclear. In the present studies we have shown by mutational analysis that phosphorylation at Ser-89 also regulates phosphorylation at Ser-96, suggesting that the gel mobility shift is the result of multiple phosphorylation events. Phosphorylation at Ser-89 did not seem to affect E1A-mediated repression of the simian virus 40 enhancer or trans-activation of the E3 promoter significantly, but it did appear to have a modest but significant effect on transformation of primary baby rat kidney cells.


Journal of Virology | 2011

Genetic Analysis of B55α/Cdc55 Protein Phosphatase 2A Subunits: Association with the Adenovirus E4orf4 Protein

Zhiying Zhang; Melissa Z. Mui; Francine Chan; Diana E. Roopchand; Richard C. Marcellus; Paola Blanchette; Suiyang Li; Albert M. Berghuis; Philip E. Branton

ABSTRACT The human adenovirus E4orf4 protein is toxic in both human tumor cells and Saccharomyces cerevisiae. Previous studies indicated that most of this toxicity is dependent on an interaction of E4orf4 protein with the B55 class of regulatory subunits of protein phosphatase 2A (PP2A) and in yeast with the B55 homolog Cdc55. We have found previously that E4orf4 inhibits PP2A activity against at least some substrates. In an attempt to understand the mechanism of this inhibition, we used a genetic approach to identify residues in the seven-bladed β-propeller proteins B55α and Cdc55 required for E4orf4 binding. In both cases, amino-terminal polypeptides composed only of blade 1 and at least part of blade 2 were found to bind E4orf4 and overexpression blocked E4orf4 toxicity in yeast. Furthermore, certain amino acid substitutions in blades 1 and 2 within full-length B55α and Cdc55 resulted in loss of E4orf4 binding. Recent mutational analysis has suggested that segments of blades 1 and 2 present on the top face of B55α form part of the “substrate-binding groove.” Additionally, these segments are in close proximity to the catalytic C subunit of the PP2A holoenzyme. Thus, our results are consistent with the hypothesis that E4orf4 binding could affect the access of substrates, resulting in the failure to dephosphorylate some PP2A substrates.

Collaboration


Dive into the Richard C. Marcellus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon C. Shore

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Watson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Zhiying Zhang

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge