Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gordon T. Taylor is active.

Publication


Featured researches published by Gordon T. Taylor.


Applied and Environmental Microbiology | 2001

Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin.

Vanessa Madrid; Gordon T. Taylor; Mary I. Scranton; Andrei Y. Chistoserdov

ABSTRACT Microbial community samples were collected from the anoxic zone of the Cariaco Basin at depths of 320, 500, and 1,310 m on a November 1996 cruise and were used to construct 16S ribosomal DNA libraries. Of 60 nonchimeric sequences in the 320-m library, 56 belonged to the ɛ subdivision of the Proteobacteria(ɛ-Proteobacteria) and 53 were closely related to ectosymbionts of Rimicaris exoculata and Alvinella pompejana, which are referred to here as epsilon symbiont relatives (ESR). The 500-m library contained sequences affiliated with the fibrobacteria, the Flexibacter-Cytophaga-Bacteroidesdivision, the division Verrucomicrobia, the divisionProteobacteria, and the OP3 candidate division. The Proteobacteria included members of the γ, δ, ɛ and new candidate subdivisions, and γ-proteobacterial sequences were dominant (25.6%) among the proteobacterial sequences. As in the 320-m library, the majority of the ɛ-proteobacteria belonged to the ESR group. The genusFibrobacter and its relatives were the second largest group in the library (23.6%), followed by the δ-proteobacteria and the ɛ-proteobacteria. The 1,310-m library had the greatest diversity; 59 nonchimeric clones in the library contained 30 unique sequences belonging to the planctomycetes, the fibrobacteria, theFlexibacter-Cytophaga-Bacteroides division, theProteobacteria, and the OP3 and OP8 candidate divisions. The proteobacteria included members of new candidate subdivisions and the β, γ, δ, and ɛ-subdivisions. ESR sequences were still present in the 1,310-m library but in a much lower proportion (8.5%). One archaeal sequence was present in the 500-m library (2% of all microorganisms in the library), and eight archaeal sequences were present in the 1,310-m library (13.6%). All archaeal sequences fell into two groups; two clones in the 1,310-m library belonged to the kingdom Crenarchaeota and the remaining sequences in both libraries belonged to the kingdom Euryarchaeota. The latter group appears to be related to the Eel-TA1f2 sequence, which belongs to an archaeon suggested to be able to oxidize methane anaerobically. Based on phylogenetic inferences and measurements of dark CO2 fixation, we hypothesized that (i) the ESR are autotrophic anaerobic sulfide oxidizers, (ii) sulfate reduction and fermentative metabolism may be carried out by a large number of bacteria in the 500- and 1,310-m libraries, and (iii) members of theEuryarchaeota found in relatively large numbers in the 1,310-m library may be involved in anaerobic methane oxidation. Overall, the composition of microbial communities from the Cariaco Basin resembles the compositions of communities from several anaerobic sediments, supporting the hypothesis that the Cariaco Basin water column is similar to anaerobic sediments.


Applied and Environmental Microbiology | 2003

Novel Eukaryotes from the Permanently Anoxic Cariaco Basin (Caribbean Sea)

Thorsten Stoeck; Gordon T. Taylor; Slava S. Epstein

ABSTRACT Present knowledge of microbial diversity is decidedly incomplete (S. J. Giovannoni and M. S. Rappé, p. 47-84, in D. Kirchman, ed., Microbial Ecology of the Oceans, 2000; E. Stackebrandt and T. M. Embley, p. 57-75, in R. R. Colwell and D. J. Grimes, ed., Nonculturable Microorganisms in the Environment, 2000). Protistan phylogenies are particularly deficient and undoubtedly exclude clades of principal ecological and evolutionary importance (S. L. Baldauf, Science 300:1703-1706, 2003). The rRNA approach has been extraordinarily successful in expanding the global prokaryotic record (S. J. Giovannoni and M. S. Rappé, p. 47-84, in D. Kirchman, ed., Microbial Ecology of the Oceans, 2000; E. Stackebrandt and T. M. Embley, p. 57-75, in R. R. Colwell and D. J. Grimes, ed., Nonculturable Microorganisms in the Environment, 2000) but has rarely been used in protistan discovery. Here we report the first application of the 18S rRNA approach to a permanently anoxic environment, the Cariaco Basin off the Venezuelan coast. On the basis of rRNA sequences, we uncovered a substantial number of novel protistan lineages. These included new clades of the highest taxonomic level unrelated to any known eukaryote as well as deep branches within established protistan groups. Three novel lineages branch at the base of the eukaryotic evolutionary tree preceding, contemporary with, or immediately following the earliest eukaryotic branches. These newly discovered protists may retain traits reminiscent of an early eukaryotic ancestor(s).


The ISME Journal | 2011

Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness

Virginia P. Edgcomb; William D. Orsi; John Bunge; Sunok Jeon; Richard Christen; Chesley Leslin; Mark T. Holder; Gordon T. Taylor; Paula Suárez; Ramon Varela; Slava S. Epstein

Microbial diversity and distribution are topics of intensive research. In two companion papers in this issue, we describe the results of the Cariaco Microbial Observatory (Caribbean Sea, Venezuela). The Basin contains the largest body of marine anoxic water, and presents an opportunity to study protistan communities across biogeochemical gradients. In the first paper, we survey 18S ribosomal RNA (rRNA) gene sequence diversity using both Sanger- and pyrosequencing-based approaches, employing multiple PCR primers, and state-of-the-art statistical analyses to estimate microbial richness missed by the survey. Sampling the Basin at three stations, in two seasons, and at four depths with distinct biogeochemical regimes, we obtained the largest, and arguably the least biased collection of over 6000 nearly full-length protistan rRNA gene sequences from a given oceanographic regime to date, and over 80 000 pyrosequencing tags. These represent all major and many minor protistan taxa, at frequencies globally similar between the two sequence collections. This large data set provided, via the recently developed parametric modeling, the first statistically sound prediction of the total size of protistan richness in a large and varied environment, such as the Cariaco Basin: over 36 000 species, defined as almost full-length 18S rRNA gene sequence clusters sharing over 99% sequence homology. This richness is a small fraction of the grand total of known protists (over 100 000–500 000 species), suggesting a degree of protistan endemism.


Applied and Environmental Microbiology | 2006

Comparison of Vertical Distributions of Prokaryotic Assemblages in the Anoxic Cariaco Basin and Black Sea by Use of Fluorescence In Situ Hybridization

Xueju Lin; Stuart G. Wakeham; Isabell F. Putnam; Yrene Astor; Mary I. Scranton; Andrei Y. Chistoserdov; Gordon T. Taylor

ABSTRACT Individual prokaryotic cells from two major anoxic basins, the Cariaco Basin and the Black Sea, were enumerated throughout their water columns using fluorescence in situ hybridization (FISH) with the fluorochrome Cy3 or horseradish peroxidase-modified oligonucleotide probes. For both basins, significant differences in total prokaryotic abundance and phylogenetic composition were observed among oxic, anoxic, and transitional (redoxcline) waters. Epsilon-proteobacteria, Crenarchaeota, and Euryarchaeota were more prevalent in the redoxclines, where previous studies reported high rates of chemoautotrophic production relative to those in waters above and below the redoxclines. Relative abundances of Archaea in both systems varied between 1% and 28% of total prokaryotes, depending on depth. The prokaryotic community composition varied between the two anoxic basins, consistent with distinct geochemical and physical conditions. In the Black Sea, the relative contributions of group I Crenarchaeota (median, 5.5%) to prokaryotic communities were significantly higher (P < 0.001; n = 20) than those of group II Euryarchaeota (median, 2.9%). In contrast, their proportions were nearly equivalent in the Cariaco Basin. Beta-proteobacteria were unexpectedly common throughout the Cariaco Basins water column, accounting for an average of 47% of 4′,6′-diamidino-2-phenylindole (DAPI)-stained cells. This group was below the detection limit (<1%) in the Black Sea samples. Compositional differences between basins may reflect temporal variability in microbial populations and/or systematic differences in environmental conditions and the populations for which they select.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Ecosystem responses in the southern Caribbean Sea to global climate change

Gordon T. Taylor; Frank E. Muller-Karger; Robert C. Thunell; Mary I. Scranton; Yrene Astor; Ramon Varela; Luis Troccoli Ghinaglia; Laura Lorenzoni; Kent A. Fanning; Sultan Hameed; Owen Doherty

Over the last few decades, rising greenhouse gas emissions have promoted poleward expansion of the large-scale atmospheric Hadley circulation that dominates the Tropics, thereby affecting behavior of the Intertropical Convergence Zone (ITCZ) and North Atlantic Oscillation (NAO). Expression of these changes in tropical marine ecosystems is poorly understood because of sparse observational datasets. We link contemporary ecological changes in the southern Caribbean Sea to global climate change indices. Monthly observations from the CARIACO Ocean Time-Series between 1996 and 2010 document significant decadal scale trends, including a net sea surface temperature (SST) rise of ∼1.0 ± 0.14 °C (±SE), intensified stratification, reduced delivery of upwelled nutrients to surface waters, and diminished phytoplankton bloom intensities evident as overall declines in chlorophyll a concentrations (ΔChla = −2.8 ± 0.5%⋅y−1) and net primary production (ΔNPP = −1.5 ± 0.3%⋅y−1). Additionally, phytoplankton taxon dominance shifted from diatoms, dinoflagellates, and coccolithophorids to smaller taxa after 2004, whereas mesozooplankton biomass increased and commercial landings of planktivorous sardines collapsed. Collectively, our results reveal an ecological state change in this planktonic system. The weakening trend in Trade Winds (−1.9 ± 0.3%⋅y−1) and dependent local variables are largely explained by trends in two climatic indices, namely the northward migration of the Azores High pressure center (descending branch of Hadley cell) by 1.12 ± 0.42°N latitude and the northeasterly progression of the ITCZ Atlantic centroid (ascending branch of Hadley cell), the March position of which shifted by about 800 km between 1996 and 2009.


Journal of Geophysical Research | 1999

Simulation of carbon‐nitrogen cycling during spring upwelling in the Cariaco Basin

John J. Walsh; Dwight A. Dieterle; Frank E. Muller-Karger; Richard Bohrer; W. Paul Bissett; Ramon Varela; Ruben Aparicio; Rafael Diaz; Robert C. Thunell; Gordon T. Taylor; Mary I. Scranton; Kent A. Fanning; Edward T. Peltzer

Coupled biological-physical models of carbon-nitrogen cycling by phytoplankton, zooplankton, and bacteria assess the impacts of nitrogen fixation and upwelled nitrate during new production within the shelf environs of the Cariaco Basin. During spring upwelling in response to a mean wind forcing of 8 m s−1, the physical model matches remote-sensing and hydrographic estimates of surface temperature. Within the three-dimensional flow field, the steady solutions of the biological model of a simple food web of diatoms, adult calanoid copepods, and ammonifying/nitrifying bacteria approximate within ∼9% the mean spring observations of settling fluxes caught by a sediment trap at ∼240 m, moored at our time series site in the basin. The models also estimate within ∼11% the average 14C net primary production and mimic the sparse observations of the spatial fields of nitrate and light penetration during the same time period of February-April. Stocks of colored dissolved organic matter are evidently small and diazotrophy is minimal during spring. In one summer case of the model with weaker wind forcing, however, the simulated net primary production is 14% of that measured in August-September, while the predicted detrital flux is then 30% of the observed. Addition of a cyanophyte state variable, with another source of new nitrogen, would remedy the seasonal deficiencies of the biological model, attributed to use of a single phytoplankton group.


The ISME Journal | 2011

Protistan microbial observatory in the Cariaco Basin, Caribbean. II. Habitat specialization

William D. Orsi; Virginia P. Edgcomb; Sunok Jeon; Chesley Leslin; John Bunge; Gordon T. Taylor; Ramon Varela; Slava S. Epstein

This is the second paper in a series of three that investigates eukaryotic microbial diversity and taxon distribution in the Cariaco Basin, Venezuela, the oceans largest anoxic marine basin. Here, we use phylogenetic information, multivariate community analyses and statistical richness predictions to test whether protists exhibit habitat specialization within defined geochemical layers of the water column. We also analyze spatio-temporal distributions of protists across two seasons and two geographic sites within the basin. Non-metric multidimensional scaling indicates that these two basin sites are inhabited by distinct protistan assemblages, an observation that is supported by the minimal overlap in observed and predicted richness of sampled sites. A comparison of parametric richness estimations indicates that protistan communities in closely spaced—but geochemically different—habitats are very dissimilar, and may share as few as 5% of total operational taxonomic units (OTUs). This is supported by a canonical correspondence analysis, indicating that the empirically observed OTUs are organized along opposing gradients in oxidants and reductants. Our phylogenetic analyses identify many new clades at species to class levels, some of which appear restricted to specific layers of the water column and have a significantly nonrandom distribution. These findings suggest many pelagic protists are restricted to specific habitats, and likely diversify, at least in part due to separation by geochemical barriers.


Estuaries | 2001

Nutrient pulses, plankton blooms, and seasonal hypoxia in western Long Island Sound

Timothy H. Anderson; Gordon T. Taylor

Development of seasonal hypoxia was studied weekly in the western narrows of Long Island Sound (WLIS) during the summers of 1992 and 1993 by measuring hydrographic properties, biological oxygen demand (BOD), biomass, production, and mortality of phytoplankton and bacterioplankton in the water column. Dissolved oxygen in bottom waters was low and variable during stratified periods (19–51% saturation), oscillating in and out of hypoxic conditions (defined as <3 mg O2 l−1 or 94 μM O2). Hypoxia was more prevalent in 1993 than in 1992, corresponding to greater water column stratification in 1993. Microbial BOD in bottom waters appeared to be fueled by delivery of autochthonous carbon from phytoplankton blooms rather than allochthonous carbon input. Phytoplankton production responded to elevated NH4+ concentrations, especially when the mixed layer was shallow. NH4+ concentrations generally varied as a function of the preceding weeks rainfall (r2=0.765). Bacterial production did not covary with phytoplankton production, yet was closely correlated with particulate organic carbon, which was chlorophyll-rich. Results indicate that the timing and severity of hypoxia development are strongly coupled to allochthonous input of NH4+ after heavy precipitation. Observations illustrate for the first time that bottom waters in this system oscillate in and out of hypoxia on an almost weekly basis rather than sustain them over the entire stratified period. The frequency of these oscillations depends upon variations in nutrients, planktonic production and export, and bottom water ventilation.


Eos, Transactions American Geophysical Union | 2006

B vitamins as regulators of phytoplankton dynamics

Caterina Panzeca; Antonio Tovar-Sánchez; Susana Agustí; Isabel Reche; Carlos M. Duarte; Gordon T. Taylor; Sergio A. Sañudo-Wilhelmy

Without an adequate supply of dissolved vitamins, many species of phytoplankton do not grow. Additions of inorganic nutrients like phosphorus and nitrogen, and trace metals like iron, are not alone adequate to sustain life—a practical lesson learned quickly by experimental biologists when they try to keep eukaryotic phytoplankton cultures alive in their labs. The reason is that coenzymes such as B vitamins are also required for many metabolic pathways. For example, vitamin B, serves as a cofactor for a large number of enzymatic systems, including the pyruvate dehydrogenase complex required for the metabolism of carbohydrates (glycolysis) and amino acid synthesis [Vandamme, 1989]. Vitamin B 12 is used primarily to assist two enzymes: methionine synthase, which is involved in DNA synthesis, and methylmalonyl CoA mutase, which is required for inorganic carbon assimilation [Lindemans and Abels, 1985].


International Journal of Systematic and Evolutionary Microbiology | 2012

Class Cariacotrichea, a novel ciliate taxon from the anoxic Cariaco Basin, Venezuela

William D. Orsi; Edgcomb; Faria J; Wilhelm Foissner; William H. Fowle; Tine Hohmann; Paula Suárez; Craig D. Taylor; Gordon T. Taylor; Peter Vd'ačný; Slava S. Epstein

The majority of environmental micro-organisms identified with the rRNA approach have never been visualized. Thus, their reliable classification and taxonomic assignment is often difficult or even impossible. In our preliminary 18S rRNA gene sequencing work from the worlds largest anoxic marine environment, the Cariaco Basin (Caribbean Sea, Venezuela), we detected a ciliate clade, designated previously as CAR_H [Stoeck, S., Taylor, G. T. & Epstein, S. S. (2003). Appl Environ Microbiol 63, 5656-5663]. Here, we combine the traditional rRNA detection method of fluorescent in situ hybridization (FISH) with scanning electron microscopy (SEM) and confirm the phylogenetic separation of the CAR_H sequences from all other ciliate classes by showing an outstanding morphological feature of this group: a unique, archway-shaped kinety surrounding the oral apparatus and extending to the posterior body end in CAR_H cells. Based on this specific feature and the molecular phylogenies, we propose a novel ciliate class, Cariacotrichea nov. cl.

Collaboration


Dive into the Gordon T. Taylor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert C. Thunell

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio A. Sañudo-Wilhelmy

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kent A. Fanning

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Andrei Y. Chistoserdov

University of Louisiana at Lafayette

View shared research outputs
Top Co-Authors

Avatar

Virginia P. Edgcomb

Woods Hole Oceanographic Institution

View shared research outputs
Researchain Logo
Decentralizing Knowledge