Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virginia P. Edgcomb is active.

Publication


Featured researches published by Virginia P. Edgcomb.


Applied and Environmental Microbiology | 2002

Microbial Diversity of Hydrothermal Sediments in the Guaymas Basin: Evidence for Anaerobic Methanotrophic Communities

Andreas Teske; Kai-Uwe Hinrichs; Virginia P. Edgcomb; Alvin de Vera Gomez; David T. Kysela; Sean P. Sylva; Mitchell L. Sogin; Holger W. Jannasch

ABSTRACT Microbial communities in hydrothermally active sediments of the Guaymas Basin (Gulf of California, Mexico) were studied by using 16S rRNA sequencing and carbon isotopic analysis of archaeal and bacterial lipids. The Guaymas sediments harbored uncultured euryarchaeota of two distinct phylogenetic lineages within the anaerobic methane oxidation 1 (ANME-1) group, ANME-1a and ANME-1b, and of the ANME-2c lineage within the Methanosarcinales, both previously assigned to the methanotrophic archaea. The archaeal lipids in the Guaymas Basin sediments included archaeol, diagnostic for nonthermophilic euryarchaeota, and sn-2-hydroxyarchaeol, with the latter compound being particularly abundant in cultured members of the Methanosarcinales. The concentrations of these compounds were among the highest observed so far in studies of methane seep environments. The δ-13C values of these lipids (δ-13C = −89 to −58‰) indicate an origin from anaerobic methanotrophic archaea. This molecular-isotopic signature was found not only in samples that yielded predominantly ANME-2 clones but also in samples that yielded exclusively ANME-1 clones. ANME-1 archaea therefore remain strong candidates for mediation of the anaerobic oxidation of methane. Based on 16S rRNA data, the Guaymas sediments harbor phylogenetically diverse bacterial populations, which show considerable overlap with bacterial populations of geothermal habitats and natural or anthropogenic hydrocarbon-rich sites. Consistent with earlier observations, our combined evidence from bacterial phylogeny and molecular-isotopic data indicates an important role of some novel deeply branching bacteria in anaerobic methanotrophy. Anaerobic methane oxidation likely represents a significant and widely occurring process in the trophic ecology of methane-rich hydrothermal vents. This study stresses a high diversity among communities capable of anaerobic oxidation of methane.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment

Virginia P. Edgcomb; David T. Kysela; Andreas Teske; Alvin de Vera Gomez; Mitchell L. Sogin

Molecular microbial ecology studies have revealed remarkable prokaryotic diversity in extreme hydrothermal marine environments. There are no comparable reports of culture-independent surveys of eukaryotic life in warm, anoxic marine sediments. By using sequence comparisons of PCR-amplified small subunit ribosomal RNAs, we characterized eukaryotic diversity in hydrothermal vent environments of Guaymas Basin in the Gulf of California. Many sequences from these anoxic sediments and the overlaying seawater represent previously uncharacterized protists, including early branching eukaryotic lineages or extended diversity within described taxa. At least two mechanisms, with overlapping consequences, account for the eukaryotic community structure of this environment. The adaptation to anoxic environments is evidenced by specific affinity of environmental sequences to aerotolerant anaerobic species in molecular trees. This pattern is superimposed against a background of widely distributed aerophilic and aerotolerant protists, some of which may migrate into and survive in the sediment whereas others (e.g., phototrophs) are simply deposited by sedimentary processes. In contrast, bacterial populations in these sediments are primarily characteristic of anoxic, reduced, hydrocarbon-rich sedimentary habitats.


Journal of Clinical Microbiology | 2005

Molecular Phylogenies of Blastocystis Isolates from Different Hosts: Implications for Genetic Diversity, Identification of Species, and Zoonosis

Christophe Noël; Fabienne Dufernez; Delphine Gerbod; Virginia P. Edgcomb; Pilar Delgado-Viscogliosi; L. C. Ho; Mulkit Singh; René Wintjens; Mitchell L. Sogin; Monique Capron; Raymond J. Pierce; Lionel Zenner; Eric Viscogliosi

ABSTRACT Small-subunit (SSU) rRNA gene sequences were obtained by PCR from 12 Blastocystis isolates from humans, rats, and reptiles for which elongation factor 1α (EF-1α) gene sequences are already available. These new sequences were analyzed by the Bayesian method in a broad phylogeny including, for the first time, all Blastocystis sequences available in the databases. Phylogenetic trees identified seven well-resolved groups plus several discrete lineages that could represent newly defined clades. Comparative analysis of SSU rRNA- and EF-1α-based trees obtained by maximum-likelihood methods from a restricted sampling (13 isolates) revealed overall agreement between the two phylogenies. In spite of their morphological similarity, sequence divergence among Blastocystis isolates reflected considerable genetic diversity that could be correlated with the existence of potentially ≥12 different species within the genus. Based on this analysis and previous PCR-based genotype classification data, six of these major groups might consist of Blastocystis isolates from both humans and other animal hosts, confirming the low host specificity of Blastocystis. Our results also strongly suggest the existence of numerous zoonotic isolates with frequent animal-to-human and human-to-animal transmissions and of a large potential reservoir in animals for infections in humans.


The ISME Journal | 2011

Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness

Virginia P. Edgcomb; William D. Orsi; John Bunge; Sunok Jeon; Richard Christen; Chesley Leslin; Mark T. Holder; Gordon T. Taylor; Paula Suárez; Ramon Varela; Slava S. Epstein

Microbial diversity and distribution are topics of intensive research. In two companion papers in this issue, we describe the results of the Cariaco Microbial Observatory (Caribbean Sea, Venezuela). The Basin contains the largest body of marine anoxic water, and presents an opportunity to study protistan communities across biogeochemical gradients. In the first paper, we survey 18S ribosomal RNA (rRNA) gene sequence diversity using both Sanger- and pyrosequencing-based approaches, employing multiple PCR primers, and state-of-the-art statistical analyses to estimate microbial richness missed by the survey. Sampling the Basin at three stations, in two seasons, and at four depths with distinct biogeochemical regimes, we obtained the largest, and arguably the least biased collection of over 6000 nearly full-length protistan rRNA gene sequences from a given oceanographic regime to date, and over 80 000 pyrosequencing tags. These represent all major and many minor protistan taxa, at frequencies globally similar between the two sequence collections. This large data set provided, via the recently developed parametric modeling, the first statistically sound prediction of the total size of protistan richness in a large and varied environment, such as the Cariaco Basin: over 36 000 species, defined as almost full-length 18S rRNA gene sequence clusters sharing over 99% sequence homology. This richness is a small fraction of the grand total of known protists (over 100 000–500 000 species), suggesting a degree of protistan endemism.


Nature | 2013

Gene expression in the deep biosphere

William D. Orsi; Virginia P. Edgcomb; Glenn D. Christman; Jennifer F. Biddle

Scientific ocean drilling has revealed a deep biosphere of widespread microbial life in sub-seafloor sediment. Microbial metabolism in the marine subsurface probably has an important role in global biogeochemical cycles, but deep biosphere activities are not well understood. Here we describe and analyse the first sub-seafloor metatranscriptomes from anaerobic Peru Margin sediment up to 159 metres below the sea floor, represented by over 1 billion complementary DNA (cDNA) sequence reads. Anaerobic metabolism of amino acids, carbohydrates and lipids seem to be the dominant metabolic processes, and profiles of dissimilatory sulfite reductase (dsr) transcripts are consistent with pore-water sulphate concentration profiles. Moreover, transcripts involved in cell division increase as a function of microbial cell concentration, indicating that increases in sub-seafloor microbial abundance are a function of cell division across all three domains of life. These data support calculations and models of sub-seafloor microbial metabolism and represent the first holistic picture of deep biosphere activities.


Environmental Microbiology | 2011

Marine subsurface eukaryotes: the fungal majority

Virginia P. Edgcomb; David J. Beaudoin; Rebecca J. Gast; Jennifer F. Biddle; Andreas Teske

Studies on the microbial communities of deep subsurface sediments have indicated the presence of Bacteria and Archaea throughout the sediment column. Microbial eukaryotes could also be present in deep-sea subsurface sediments; either bacterivorous protists or eukaryotes capable of assimilating buried organic carbon. DNA- and RNA-based clone library analyses are used here to examine the microbial eukaryotic diversity and identify the potentially active members in deep-sea sediment cores of the Peru Margin and the Peru Trench. We compared surface communities with those much deeper in the same cores, and compared cores from different sites. Fungal sequences were most often recovered from both DNA- and RNA-based clone libraries, with variable overall abundances of different sequence types and different dominant clone types in the RNA-based and the DNA-based libraries. Surficial sediment communities were different from each other and from the deep subsurface samples. Some fungal sequences represented potentially novel organisms as well as ones with a cosmopolitan distribution in terrestrial, fresh and salt water environments. Our results indicate that fungi are the most consistently detected eukaryotes in the marine sedimentary subsurface; further, some species may be specifically adapted to the deep subsurface and may play important roles in the utilization and recycling of nutrients.


FEMS Microbiology Ecology | 2003

Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176)

Konstantinos Ar. Kormas; David C. Smith; Virginia P. Edgcomb; Andreas Teske

Abstract The prokaryotic community inhabiting the deep subsurface sediments in the Forearc Basin of the Nankai Trough southeast of Japan (ODP Site 1176) was analyzed by 16S rDNA sequencing. Sediment samples from 1.15, 51.05, 98.50 and 193.96 m below sea floor (mbsf) harbored highly diverse bacterial communities. The most frequently retrieved clones included members of the Green non-sulfur bacteria whose closest relatives come from deep subsurface environments, a new epsilon-proteobacterial phylotype, and representatives of a cluster of closely related bacterial sequences from hydrocarbon- and methane-rich sediments around the world. Archaeal clones were limited to members of the genus Thermococcus, and were only obtained from the two deepest samples.


PLOS ONE | 2013

Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces

William D. Orsi; Jennifer F. Biddle; Virginia P. Edgcomb

The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.


Environmental Microbiology | 2009

The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration.

Cara M. Santelli; Virginia P. Edgcomb; Wolfgang Bach; Katrina J. Edwards

Young, basaltic ocean crust exposed near mid-ocean ridge spreading centers present a spatially extensive environment that may be exploited by epi- and endolithic microbes in the deep sea. Geochemical energy released during basalt alteration reactions can theoretically support chemosynthesis, contributing to a trophic base for the ocean crust biome. To examine associations between endolithic microorganisms and basalt alteration processes, we compare the phylogenetic diversity, abundance and community structure of bacteria existing in several young, seafloor lavas from the East Pacific Rise at approximately 9 degrees N that are variably affected by oxidative seawater alteration. The results of 16S rRNA gene analyses and real-time, quantitative polymerase chain reaction measurements show that the abundance of prokaryotic communities, dominated by the bacterial domain, positively correlates with the extent of rock alteration--the oldest, most altered basalt harbours the greatest microbial biomass. The bacterial community overlap, structure and species richness relative to alteration state is less explicit, but broadly corresponds to sample characteristics (type of alteration products and general alteration state). Phylogenetic analyses suggest that the basalt biome may contribute to the geochemical cycling of Fe, S, Mn, C and N in the deep sea.


The ISME Journal | 2011

Protistan microbial observatory in the Cariaco Basin, Caribbean. II. Habitat specialization

William D. Orsi; Virginia P. Edgcomb; Sunok Jeon; Chesley Leslin; John Bunge; Gordon T. Taylor; Ramon Varela; Slava S. Epstein

This is the second paper in a series of three that investigates eukaryotic microbial diversity and taxon distribution in the Cariaco Basin, Venezuela, the oceans largest anoxic marine basin. Here, we use phylogenetic information, multivariate community analyses and statistical richness predictions to test whether protists exhibit habitat specialization within defined geochemical layers of the water column. We also analyze spatio-temporal distributions of protists across two seasons and two geographic sites within the basin. Non-metric multidimensional scaling indicates that these two basin sites are inhabited by distinct protistan assemblages, an observation that is supported by the minimal overlap in observed and predicted richness of sampled sites. A comparison of parametric richness estimations indicates that protistan communities in closely spaced—but geochemically different—habitats are very dissimilar, and may share as few as 5% of total operational taxonomic units (OTUs). This is supported by a canonical correspondence analysis, indicating that the empirically observed OTUs are organized along opposing gradients in oxidants and reductants. Our phylogenetic analyses identify many new clades at species to class levels, some of which appear restricted to specific layers of the water column and have a significantly nonrandom distribution. These findings suggest many pelagic protists are restricted to specific habitats, and likely diversify, at least in part due to separation by geochemical barriers.

Collaboration


Dive into the Virginia P. Edgcomb's collaboration.

Top Co-Authors

Avatar

Maria G. Pachiadaki

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Joan M. Bernhard

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

David J. Beaudoin

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Andreas Teske

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Thorsten Stoeck

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Michail M. Yakimov

Immanuel Kant Baltic Federal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig D. Taylor

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitchell L. Sogin

Marine Biological Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge