Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gos Micklem is active.

Publication


Featured researches published by Gos Micklem.


Science | 2010

Identification of functional elements and regulatory circuits by Drosophila modENCODE

Sushmita Roy; Jason Ernst; Peter V. Kharchenko; Pouya Kheradpour; Nicolas Nègre; Matthew L. Eaton; Jane M. Landolin; Christopher A. Bristow; Lijia Ma; Michael F. Lin; Stefan Washietl; Bradley I. Arshinoff; Ferhat Ay; Patrick E. Meyer; Nicolas Robine; Nicole L. Washington; Luisa Di Stefano; Eugene Berezikov; Christopher D. Brown; Rogerio Candeias; Joseph W. Carlson; Adrian Carr; Irwin Jungreis; Daniel Marbach; Rachel Sealfon; Michael Y. Tolstorukov; Sebastian Will; Artyom A. Alekseyenko; Carlo G. Artieri; Benjamin W. Booth

From Genome to Regulatory Networks For biologists, having a genome in hand is only the beginning—much more investigation is still needed to characterize how the genome is used to help to produce a functional organism (see the Perspective by Blaxter). In this vein, Gerstein et al. (p. 1775) summarize for the Caenorhabditis elegans genome, and The modENCODE Consortium (p. 1787) summarize for the Drosophila melanogaster genome, full transcriptome analyses over developmental stages, genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and provide basic information needed to guide and correlate both focused and genome-wide studies. The Drosophila modENCODE project demonstrates the functional regulatory network of flies. To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.


Nature | 2009

Unlocking the secrets of the genome

Susan E. Celniker; Laura A L Dillon; Mark Gerstein; Kristin C. Gunsalus; Steven Henikoff; Gary H. Karpen; Manolis Kellis; Eric C. Lai; Jason D. Lieb; David M. MacAlpine; Gos Micklem; Fabio Piano; Michael Snyder; Lincoln Stein; Kevin P. White; Robert H. Waterston

Despite the successes of genomics, little is known about how genetic information produces complex organisms. A look at the crucial functional elements of fly and worm genomes could change that. The National Human Genome Research Institutes modENCODE project (the model organism ENCyclopedia Of DNA Elements) was set up in 2007 with the goal of identifying all the sequence-based functional elements in the genomes of two important experimental organisms, Caenorhabditis elegans and Drosophila melanogaster. Armed with modENCODE data, geneticists will be able to undertake the comprehensive molecular studies of regulatory networks that hold the key to how complex multicellular organisms arise from the list of instructions coded in the genome. In this issue, modENCODE team members outline their plan of campaign. Data from the project are to be made available on http://www.modencode.org and elsewhere as the work progresses.


Genome Biology | 2007

FlyMine: an integrated database for Drosophila and Anopheles genomics

Rachel Lyne; Richard J. Smith; Kim Rutherford; Matthew Wakeling; Andrew Varley; Francois Guillier; Hilde Janssens; Wenyan Ji; Peter McLaren; Philip North; Debashis Rana; Tom Riley; Julie Sullivan; Xavier Watkins; Mark Woodbridge; Kathryn S. Lilley; Steve Russell; Michael Ashburner; Kenji Mizuguchi; Gos Micklem

FlyMine is a data warehouse that addresses one of the important challenges of modern biology: how to integrate and make use of the diversity and volume of current biological data. Its main focus is genomic and proteomics data for Drosophila and other insects. It provides web access to integrated data at a number of different levels, from simple browsing to construction of complex queries, which can be executed on either single items or lists.


Somatic Cell and Molecular Genetics | 1994

Structure and expression of the Huntington's disease gene: Evidence against simple inactivation due to an expanded CAG repeat

Christine Ambrose; Mabel P. Duyao; Glenn Barnes; Gillian P. Bates; Carol Lin; Jayalakshmi Srinidhi; Sarah Baxendale; Holger Hummerich; Hans Lehrach; Michael R. Altherr; John J. Wasmuth; Alan J. Buckler; Deanna Church; David E. Housman; M. Berks; Gos Micklem; Richard Durbin; Alan Dodge; Andrew P. Read; James F. Gusella; Marcy E. MacDonald

Huntingtons disease, a neurodegenerative disorder characterized by loss of striatal neurons, is caused by an expanded, unstable trinucleotide repeat in a novel 4p16.3 gene. To lay the foundation for exploring the pathogenic mechanism in HD, we have determined the structure of the disease gene and examined its expression. TheHD locus spans 180 kb and consists of 67 exons ranging in size from 48 bp to 341 bp with an average of 138 bp. Scanning of theHD transcript failed to reveal any additional sequence alterations characteristic of HD chromosomes. A codon loss polymorphism in linkage disequilibrium with the disorder revealed that both normal and HD alleles are represented in the mRNA population in HD heterozygotes, indicating that the defect does not eliminate transcription. The gene is ubiquitously expressed as two alternatively polyadenylated forms displaying different relative abundance in various fetal and adult tissues, suggesting the operation of interacting factors in determining specificity of cell loss. TheHD gene was disrupted in a female carrying a balanced translocation with a breakpoint between exons 40 and 41. The absence of any abnormal phenotype in this individual argues against simple inactivation of the gene as the mechanism by which the expanded trinucleotide repeat causes HD. Taken together, these observations suggest that the dominant HD mutation either confers a new property on the mRNA or, more likely, alters an interaction at the protein level.


Nature Genetics | 1995

Comparative sequence analysis of the human and pufferfish Huntington's disease genes

Sarah Baxendale; Sarah Abdulla; Greg Elgar; David Buck; M. Berks; Gos Micklem; Richard Durbin; Gill Bates; Sydney Brenner; Stephan Beck; Hans Lehrach

The Huntingtons disease (HD) gene encodes a novel protein with as yet no known function. In order to identify the functionally important domains of this protein, we have cloned and sequenced the homologue of the HD gene in the pufferfish, Fugu rubripes. The Fugu HD gene spans only 23 kb of genomic DMA, compared to the 170 kb human gene, and yet all 67 exons are conserved. The first coding exon, the site of the disease–causing triplet repeat, is highly conserved. However, the glutamine repeat in Fugu consists of just four residues. We also show that gene order may be conserved over longer stretches of the two genomes. Our work describes a detailed example of sequence comparison between human and Fugu and illustrates the power of the pufferfish genome as a model system in the analysis of human genes.


Genome Biology | 2015

Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes.

Alastair Crisp; Chiara Boschetti; Malcolm J. Perry; Alan Tunnacliffe; Gos Micklem

BackgroundA fundamental concept in biology is that heritable material, DNA, is passed from parent to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic material between different species. HGT is well-known in single-celled organisms such as bacteria, but its existence in higher organisms, including animals, is less well established, and is controversial in humans.ResultsWe have taken advantage of the recent availability of a sufficient number of high-quality genomes and associated transcriptomes to carry out a detailed examination of HGT in 26 animal species (10 primates, 12 flies and four nematodes) and a simplified analysis in a further 14 vertebrates. Genome-wide comparative and phylogenetic analyses show that HGT in animals typically gives rise to tens or hundreds of active ‘foreign’ genes, largely concerned with metabolism. Our analyses suggest that while fruit flies and nematodes have continued to acquire foreign genes throughout their evolution, humans and other primates have gained relatively few since their common ancestor. We also resolve the controversy surrounding previous evidence of HGT in humans and provide at least 33 new examples of horizontally acquired genes.ConclusionsWe argue that HGT has occurred, and continues to occur, on a previously unsuspected scale in metazoans and is likely to have contributed to biochemical diversification during animal evolution.


Database | 2012

YeastMine—an integrated data warehouse for Saccharomyces cerevisiae data as a multipurpose tool-kit

Rama Balakrishnan; Julie Park; Kalpana Karra; Benjamin C. Hitz; Gail Binkley; Eurie L. Hong; Julie Sullivan; Gos Micklem; J. Michael Cherry

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) provides high-quality curated genomic, genetic, and molecular information on the genes and their products of the budding yeast Saccharomyces cerevisiae. To accommodate the increasingly complex, diverse needs of researchers for searching and comparing data, SGD has implemented InterMine (http://www.InterMine.org), an open source data warehouse system with a sophisticated querying interface, to create YeastMine (http://yeastmine.yeastgenome.org). YeastMine is a multifaceted search and retrieval environment that provides access to diverse data types. Searches can be initiated with a list of genes, a list of Gene Ontology terms, or lists of many other data types. The results from queries can be combined for further analysis and saved or downloaded in customizable file formats. Queries themselves can be customized by modifying predefined templates or by creating a new template to access a combination of specific data types. YeastMine offers multiple scenarios in which it can be used such as a powerful search interface, a discovery tool, a curation aid and also a complex database presentation format. Database URL: http://yeastmine.yeastgenome.org


Bioinformatics | 2012

InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data

Richard N. Smith; Jelena Aleksic; Daniela Butano; Adrian Carr; Sergio Contrino; Fengyuan Hu; Mike Lyne; Rachel Lyne; Alex Kalderimis; Kim Rutherford; Radek Stepan; Julie Sullivan; Matthew Wakeling; Xavier Watkins; Gos Micklem

Summary: InterMine is an open-source data warehouse system that facilitates the building of databases with complex data integration requirements and a need for a fast customizable query facility. Using InterMine, large biological databases can be created from a range of heterogeneous data sources, and the extensible data model allows for easy integration of new data types. The analysis tools include a flexible query builder, genomic region search and a library of ‘widgets’ performing various statistical analyses. The results can be exported in many commonly used formats. InterMine is a fully extensible framework where developers can add new tools and functionality. Additionally, there is a comprehensive set of web services, for which client libraries are provided in five commonly used programming languages. Availability: Freely available from http://www.intermine.org under the LGPL license. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


PLOS Genetics | 2012

Biochemical diversification through foreign gene expression in bdelloid rotifers.

Chiara Boschetti; Adrian Carr; Alastair Crisp; Isobel Eyres; Yuan Wang-Koh; Esther Lubzens; Timothy G. Barraclough; Gos Micklem; Alan Tunnacliffe

Bdelloid rotifers are microinvertebrates with unique characteristics: they have survived tens of millions of years without sexual reproduction; they withstand extreme desiccation by undergoing anhydrobiosis; and they tolerate very high levels of ionizing radiation. Recent evidence suggests that subtelomeric regions of the bdelloid genome contain sequences originating from other organisms by horizontal gene transfer (HGT), of which some are known to be transcribed. However, the extent to which foreign gene expression plays a role in bdelloid physiology is unknown. We address this in the first large scale analysis of the transcriptome of the bdelloid Adineta ricciae: cDNA libraries from hydrated and desiccated bdelloids were subjected to massively parallel sequencing and assembled transcripts compared against the UniProtKB database by blastx to identify their putative products. Of ~29,000 matched transcripts, ~10% were inferred from blastx matches to be horizontally acquired, mainly from eubacteria but also from fungi, protists, and algae. After allowing for possible sources of error, the rate of HGT is at least 8%-9%, a level significantly higher than other invertebrates. We verified their foreign nature by phylogenetic analysis and by demonstrating linkage of foreign genes with metazoan genes in the bdelloid genome. Approximately 80% of horizontally acquired genes expressed in bdelloids code for enzymes, and these represent 39% of enzymes in identified pathways. Many enzymes encoded by foreign genes enhance biochemistry in bdelloids compared to other metazoans, for example, by potentiating toxin degradation or generation of antioxidants and key metabolites. They also supplement, and occasionally potentially replace, existing metazoan functions. Bdelloid rotifers therefore express horizontally acquired genes on a scale unprecedented in animals, and foreign genes make a profound contribution to their metabolism. This represents a potential mechanism for ancient asexuals to adapt rapidly to changing environments and thereby persist over long evolutionary time periods in the absence of sex.


Nucleic Acids Research | 2012

modMine: flexible access to modENCODE data

Sergio Contrino; Richard N. Smith; Daniela Butano; Adrian Carr; Fengyuan Hu; Rachel Lyne; Kim Rutherford; Alexis Kalderimis; Julie Sullivan; Seth Carbon; E. Kephart; P. Lloyd; Eo Stinson; Nicole L. Washington; M. Perry; P. Ruzanov; Z. Zha; Suzanna E. Lewis; Lincoln Stein; Gos Micklem

In an effort to comprehensively characterize the functional elements within the genomes of the important model organisms Drosophila melanogaster and Caenorhabditis elegans, the NHGRI model organism Encyclopaedia of DNA Elements (modENCODE) consortium has generated an enormous library of genomic data along with detailed, structured information on all aspects of the experiments. The modMine database (http://intermine.modencode.org) described here has been built by the modENCODE Data Coordination Center to allow the broader research community to (i) search for and download data sets of interest among the thousands generated by modENCODE; (ii) access the data in an integrated form together with non-modENCODE data sets; and (iii) facilitate fine-grained analysis of the above data. The sophisticated search features are possible because of the collection of extensive experimental metadata by the consortium. Interfaces are provided to allow both biologists and bioinformaticians to exploit these rich modENCODE data sets now available via modMine.

Collaboration


Dive into the Gos Micklem's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel Lyne

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Carr

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Radek Stepan

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge