Julie Sullivan
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julie Sullivan.
Genome Biology | 2007
Rachel Lyne; Richard J. Smith; Kim Rutherford; Matthew Wakeling; Andrew Varley; Francois Guillier; Hilde Janssens; Wenyan Ji; Peter McLaren; Philip North; Debashis Rana; Tom Riley; Julie Sullivan; Xavier Watkins; Mark Woodbridge; Kathryn S. Lilley; Steve Russell; Michael Ashburner; Kenji Mizuguchi; Gos Micklem
FlyMine is a data warehouse that addresses one of the important challenges of modern biology: how to integrate and make use of the diversity and volume of current biological data. Its main focus is genomic and proteomics data for Drosophila and other insects. It provides web access to integrated data at a number of different levels, from simple browsing to construction of complex queries, which can be executed on either single items or lists.
Database | 2012
Rama Balakrishnan; Julie Park; Kalpana Karra; Benjamin C. Hitz; Gail Binkley; Eurie L. Hong; Julie Sullivan; Gos Micklem; J. Michael Cherry
The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) provides high-quality curated genomic, genetic, and molecular information on the genes and their products of the budding yeast Saccharomyces cerevisiae. To accommodate the increasingly complex, diverse needs of researchers for searching and comparing data, SGD has implemented InterMine (http://www.InterMine.org), an open source data warehouse system with a sophisticated querying interface, to create YeastMine (http://yeastmine.yeastgenome.org). YeastMine is a multifaceted search and retrieval environment that provides access to diverse data types. Searches can be initiated with a list of genes, a list of Gene Ontology terms, or lists of many other data types. The results from queries can be combined for further analysis and saved or downloaded in customizable file formats. Queries themselves can be customized by modifying predefined templates or by creating a new template to access a combination of specific data types. YeastMine offers multiple scenarios in which it can be used such as a powerful search interface, a discovery tool, a curation aid and also a complex database presentation format. Database URL: http://yeastmine.yeastgenome.org
Bioinformatics | 2012
Richard N. Smith; Jelena Aleksic; Daniela Butano; Adrian Carr; Sergio Contrino; Fengyuan Hu; Mike Lyne; Rachel Lyne; Alex Kalderimis; Kim Rutherford; Radek Stepan; Julie Sullivan; Matthew Wakeling; Xavier Watkins; Gos Micklem
Summary: InterMine is an open-source data warehouse system that facilitates the building of databases with complex data integration requirements and a need for a fast customizable query facility. Using InterMine, large biological databases can be created from a range of heterogeneous data sources, and the extensible data model allows for easy integration of new data types. The analysis tools include a flexible query builder, genomic region search and a library of ‘widgets’ performing various statistical analyses. The results can be exported in many commonly used formats. InterMine is a fully extensible framework where developers can add new tools and functionality. Additionally, there is a comprehensive set of web services, for which client libraries are provided in five commonly used programming languages. Availability: Freely available from http://www.intermine.org under the LGPL license. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
Nucleic Acids Research | 2012
Sergio Contrino; Richard N. Smith; Daniela Butano; Adrian Carr; Fengyuan Hu; Rachel Lyne; Kim Rutherford; Alexis Kalderimis; Julie Sullivan; Seth Carbon; E. Kephart; P. Lloyd; Eo Stinson; Nicole L. Washington; M. Perry; P. Ruzanov; Z. Zha; Suzanna E. Lewis; Lincoln Stein; Gos Micklem
In an effort to comprehensively characterize the functional elements within the genomes of the important model organisms Drosophila melanogaster and Caenorhabditis elegans, the NHGRI model organism Encyclopaedia of DNA Elements (modENCODE) consortium has generated an enormous library of genomic data along with detailed, structured information on all aspects of the experiments. The modMine database (http://intermine.modencode.org) described here has been built by the modENCODE Data Coordination Center to allow the broader research community to (i) search for and download data sets of interest among the thousands generated by modENCODE; (ii) access the data in an integrated form together with non-modENCODE data sets; and (iii) facilitate fine-grained analysis of the above data. The sophisticated search features are possible because of the collection of extensive experimental metadata by the consortium. Interfaces are provided to allow both biologists and bioinformaticians to exploit these rich modENCODE data sets now available via modMine.
Nucleic Acids Research | 2015
Vivek Krishnakumar; Matthew R. Hanlon; Sergio Contrino; Erik S. Ferlanti; Svetlana Karamycheva; Maria Kim; Benjamin D. Rosen; Chia Yi Cheng; Walter Moreira; Stephen A. Mock; Joe Stubbs; Julie Sullivan; Konstantinos Krampis; Jason R. Miller; Gos Micklem; Matthew W. Vaughn; Christopher D. Town
The Arabidopsis Information Portal (https://www.araport.org) is a new online resource for plant biology research. It houses the Arabidopsis thaliana genome sequence and associated annotation. It was conceived as a framework that allows the research community to develop and release ‘modules’ that integrate, analyze and visualize Arabidopsis data that may reside at remote sites. The current implementation provides an indexed database of core genomic information. These data are made available through feature-rich web applications that provide search, data mining, and genome browser functionality, and also by bulk download and web services. Araport uses software from the InterMine and JBrowse projects to expose curated data from TAIR, GO, BAR, EBI, UniProt, PubMed and EPIC CoGe. The site also hosts ‘science apps,’ developed as prototypes for community modules that use dynamic web pages to present data obtained on-demand from third-party servers via RESTful web services. Designed for sustainability, the Arabidopsis Information Portal strategy exploits existing scientific computing infrastructure, adopts a practical mixture of data integration technologies and encourages collaborative enhancement of the resource by its user community.
Nucleic Acids Research | 2014
Alex Kalderimis; Rachel Lyne; Daniela Butano; Sergio Contrino; Mike Lyne; Joshua Heimbach; Fengyuan Hu; Richard L. Smith; Radek Štěpán; Julie Sullivan; Gos Micklem
InterMine (www.intermine.org) is a biological data warehousing system providing extensive automatically generated and configurable RESTful web services that underpin the web interface and can be re-used in many other applications: to find and filter data; export it in a flexible and structured way; to upload, use, manipulate and analyze lists; to provide services for flexible retrieval of sequence segments, and for other statistical and analysis tools. Here we describe these features and discuss how they can be used separately or in combinations to support integrative and comparative analysis.
Scientific Reports | 2013
Julie Sullivan; Kalpana Karra; Sierra A. T. Moxon; Andrew Vallejos; Howie Motenko; J. D. Wong; Jelena Aleksic; Rama Balakrishnan; Gail Binkley; Todd W. Harris; Benjamin C. Hitz; Pushkala Jayaraman; Rachel Lyne; Steven B. Neuhauser; Christian Pich; Richard N. Smith; Quang Trinh; J. Michael Cherry; Joel E. Richardson; Lincoln Stein; Simon N. Twigger; Monte Westerfield; Elizabeth A. Worthey; Gos Micklem
Model organisms are widely used for understanding basic biology, and have significantly contributed to the study of human disease. In recent years, genomic analysis has provided extensive evidence of widespread conservation of gene sequence and function amongst eukaryotes, allowing insights from model organisms to help decipher gene function in a wider range of species. The InterMOD consortium is developing an infrastructure based around the InterMine data warehouse system to integrate genomic and functional data from a number of key model organisms, leading the way to improved cross-species research. So far including budding yeast, nematode worm, fruit fly, zebrafish, rat and mouse, the project has set up data warehouses, synchronized data models, and created analysis tools and links between data from different species. The project unites a number of major model organism databases, improving both the consistency and accessibility of comparative research, to the benefit of the wider scientific community.
Genesis | 2015
Rachel Lyne; Julie Sullivan; Daniela Butano; Sergio Contrino; Joshua Heimbach; Fengyuan Hu; Alex Kalderimis; Mike Lyne; Richard N. Smith; Radek Štěpán; Rama Balakrishnan; Gail Binkley; Todd W. Harris; Kalpana Karra; Sierra A. T. Moxon; Howie Motenko; Steven B. Neuhauser; Leyla Ruzicka; Mike Cherry; Joel E. Richardson; Lincoln Stein; Monte Westerfield; Elizabeth A. Worthey; Gos Micklem
InterMine is a data integration warehouse and analysis software system developed for large and complex biological data sets. Designed for integrative analysis, it can be accessed through a user‐friendly web interface. For bioinformaticians, extensive web services as well as programming interfaces for most common scripting languages support access to all features. The web interface includes a useful identifier look‐up system, and both simple and sophisticated search options. Interactive results tables enable exploration, and data can be filtered, summarized, and browsed. A set of graphical analysis tools provide a rich environment for data exploration including statistical enrichment of sets of genes or other entities. InterMine databases have been developed for the major model organisms, budding yeast, nematode worm, fruit fly, zebrafish, mouse, and rat together with a newly developed human database. Here, we describe how this has facilitated interoperation and development of cross‐organism analysis tools and reports. InterMine as a data exploration and analysis tool is also described. All the InterMine‐based systems described in this article are resources freely available to the scientific community. genesis 53:547–560, 2015.
Database | 2015
David Rhee; Matthew McKnight Croken; Kevin R. Shieh; Julie Sullivan; Gos Micklem; Kami Kim; Aaron Golden
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that must monitor for changes in the host environment and respond accordingly; however, it is still not fully known which genetic or epigenetic factors are involved in regulating virulence traits of T. gondii. There are on-going efforts to elucidate the mechanisms regulating the stage transition process via the application of high-throughput epigenomics, genomics and proteomics techniques. Given the range of experimental conditions and the typical yield from such high-throughput techniques, a new challenge arises: how to effectively collect, organize and disseminate the generated data for subsequent data analysis. Here, we describe toxoMine, which provides a powerful interface to support sophisticated integrative exploration of high-throughput experimental data and metadata, providing researchers with a more tractable means toward understanding how genetic and/or epigenetic factors play a coordinated role in determining pathogenicity of T. gondii. As a data warehouse, toxoMine allows integration of high-throughput data sets with public T. gondii data. toxoMine is also able to execute complex queries involving multiple data sets with straightforward user interaction. Furthermore, toxoMine allows users to define their own parameters during the search process that gives users near-limitless search and query capabilities. The interoperability feature also allows users to query and examine data available in other InterMine systems, which would effectively augment the search scope beyond what is available to toxoMine. toxoMine complements the major community database ToxoDB by providing a data warehouse that enables more extensive integrative studies for T. gondii. Given all these factors, we believe it will become an indispensable resource to the greater infectious disease research community. Database URL: http://toxomine.org
F1000Research | 2014
Alexis Kalderimis; Radek Stepan; Julie Sullivan; Rachel Lyne; Michael Lyne; Gos Micklem
Summary: The DAGViewer BioJS component is a reusable JavaScript component made available as part of the BioJS project and intended to be used to display graphs of structured data, with a particular emphasis on Directed Acyclic Graphs (DAGs). It enables users to embed representations of graphs of data, such as ontologies or phylogenetic trees, in hyper-text documents (HTML). This component is generic, since it is capable (given the appropriate configuration) of displaying any kind of data that is organised as a graph. The features of this component which are useful for examining and filtering large and complex graphs are described. Availability: http://github.com/alexkalderimis/dag-viewer-biojs; http://github.com/biojs/biojs; http://dx.doi.org/10.5281/zenodo.8303.