Götz Bokelmann
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Götz Bokelmann.
Journal of Geophysical Research | 2015
I. Bianchi; Götz Bokelmann; K. Shiomi
Abstract Northern Japan is a tectonically active area, with the presence of several volcanoes, and with frequent earthquakes among which the destructive M w = 8.9–9.0 Tohoku‐oki occurred on 11 March 2011. Tectonic activity leaves an imprint on the crustal structures, on both the upper and the lower layers. To investigate the crust in northern Japan, we construct a receiver function data set using teleseismic events recorded at 58 seismic stations belonging to the Japanese National (Hi‐net) network. We isolate the signals, in the receiver function wavelet, that witness the presence of anisotropic structures at depth, with the aim of mapping the variation of anisotropy across the northern part of the island. This study focuses on the relation among anisotropy detected in the crust, stresses induced by plate convergence across the subduction zone, and the intrinsic characteristics of the rocks. Our results show how a simple velocity model with two anisotropic layers reproduces the observed data at the stations. We observe a negligible or small amount of signal related to anisotropy in the eastern part of the study area (i.e., the outer arc) for both upper and lower crust. Distinct anisotropic features are observed at the stations on the western part of the study area (i.e., the inner arc) for both upper and lower crust. The symmetry axes are mostly E‐W oriented. Deviation from the E‐W orientation is observed close to the volcanic areas, where the higher geothermal gradient might influence the deformation processes.
Journal of Geophysical Research | 2016
Ehsan Qorbani; Götz Bokelmann; István János Kovács; Ferenc Horváth; György Falus
To better understand the evolution and present-day tectonics of the Carpathian-Pannonian Region (CPR), we characterize the upper mantle anisotropic structure. We present a shear wave splitting analysis from teleseismic events recorded at the Carpathian Basin Project and permanent stations located in the CPR. The results show a large-scale uniform NW-SE fast orientation under the entire CPR. Compared with the complexity of geologic structures, the anisotropy expresses a relatively simple pattern of deformation. We attribute this anisotropy to an asthenospheric origin and interpret it as flow-induced alignments within the upper mantle. We also observe a few measurements depicting NE-SW fast orientation in line with the Mid-Hungarian Shear Zone. This suggests the likely contribution of either lithosphere or northeastward flow into a slab gap under the northern Dinarides. We observe splitting delay times on average of 1 s, showing noticeable change (60%) in the middle Pannonian basin. This change correlates well with the variation in the thickness of low-velocity zones that were previously imaged between a depth of 75 and 400 km by velocity tomography. In order to evaluate the relation between anisotropy and tectonics, we compare our data with the tectonic models that have so far been suggested to explain the evolution and current-stage tectonics of the region. We present here a plausible tectonic model responsible for the NW-SE anisotropy within the asthenospheric mantle. In this model, NW-SE deformation is mainly generated in a northeastward compressional tectonic regime acting in a wide region between the Adriatic microplate and the East European platform.
Geophysical Prospecting | 2017
F. Schneider; Sofi Esterhazy; Ilaria Perugia; Götz Bokelmann
We study the interaction of a seismic wave-field with a spherical acoustic gas or fluid-filled cavity. The intention of this study is to clarify whether seismic resonances can be expected, a characteristic feature, which may help detecting cavities in the subsurface. This is important for many applications, as in particular the detection of underground nuclear explosions which are to be prohibited by the Comprehensive-Test-Ban-Treaty. In order to calculate the full seismic wave-field from an incident plane wave that interacts with the cavity, we considered an analytic formulation of the problem. The wave-field interaction consists of elastic scattering and the wave-field interaction between the acoustic and elastic media. Acoustic resonant modes, caused by internal reections in the acoustic cavity, show up as spectral peaks in the frequency domain. The resonant peaks coincide with the eigenfrequencies of the undamped system described by the particular acoustic medium bounded in a sphere with stiff walls. The filling of the cavity could thus be determined by the observation of spectral peaks from acoustic resonances. By energy transmission from the internal oscillations back into the elastic domain, the oscillations experience damping, resulting in a frequency shift and a limitation of the resonance amplitudes. In case of a gas-filled cavity the impedance contrast is still high, which means low damping of the internal oscillations resulting in very narrow resonances of high amplitude. In synthetic seismograms calculated in the surrounding elastic domain, the acoustic resonances of gas-filled cavities show up as persisting oscillations. However, due to the weak acoustic-elastic coupling in this case the amplitudes of the oscillations are very low. Due to a lower impedance contrast, a fluid-filled cavity has a stronger acoustic-elastic coupling, which results in wide spectral peaks of lower amplitudes. In the synthetic seismograms derived in the surrounding medium of fluid-filled cavities, acoustic resonances show up as strong but fast decaying reverberations. This article is protected by copyright. All rights reserved
Pure and Applied Geophysics | 2018
Katalin Gribovszki; Sofi Esterhazy; Götz Bokelmann
Recently, it has been argued that natural, intact stalagmites in caves give important constraints on seismic hazard since they have survived all earthquakes over their (rather long) life span. This suggests that the pattern of oscillation should be fully understood, including the splitting of eigenfrequencies that has occurred in recent cave observations. In the present study, we simulate the oscillation of a given stalagmite by setting up four simplified models of the stalagmite. The dimensions of the intact stalagmite were measured in situ, and the geo-mechanical and elastic parameters of broken stalagmite samples, determined in geo-mechanical laboratory, have been taken into account. The eigenfrequencies of the stalagmite are then calculated numerically, by the finite element method, and compared with the measured in situ values. The latter have shown splitting of eigenfrequencies, which we were able to reproduce by the numerical model calculations taking into account the asymmetric shape of the stalagmite.
Earth and Planetary Science Letters | 2013
Götz Bokelmann; Ehsan Qorbani; I. Bianchi
Earth and Planetary Science Letters | 2015
Ehsan Qorbani; I. Bianchi; Götz Bokelmann
Earth and Planetary Science Letters | 2014
I. Bianchi; Meghan S. Miller; Götz Bokelmann
Earth and Planetary Science Letters | 2014
Götz Bokelmann; Fee-Alexandra Rodler
Journal of Geophysical Research | 2013
Nima Riahi; Götz Bokelmann; Paola Sala; Erik H. Saenger
Advances in Geosciences | 2013
Andreas Gerner; Götz Bokelmann