Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gouri Yogalingam is active.

Publication


Featured researches published by Gouri Yogalingam.


Journal of Biological Chemistry | 2008

Abl Kinases Regulate Autophagy by Promoting the Trafficking and Function of Lysosomal Components

Gouri Yogalingam; Ann Marie Pendergast

Autophagy is a lysosome-dependent degradative pathway that regulates the turnover of intracellular organelles, parasites, and long-lived proteins. Deregulation of autophagy results in a variety of pathological conditions, but little is known regarding the mechanisms that link normal cellular and pathological signals to the regulation of distinct stages in the autophagy pathway. Here we uncover a novel role for the Abl family kinases in the regulation of the late stages of autophagy. Inhibition, depletion, or knockout of of the Abl family kinases, Abl and Arg, resulted in a dramatic reduction in the intracellular activities of the lysosomal glycosidases α-galactosidase, α-mannosidase and neuraminidase. Inhibition of Abl kinases also reduced the processing of the precursor forms of cathepsin D and cathepsin L to their mature, lysosomal forms, which coincided with the impaired turnover of long-lived cytosolic proteins and accumulation of autophagosomes. Furthermore, defective lysosomal degradation of long-lived proteins in the absence of Abl kinase signaling was accompanied by a perinuclear redistribution of lysosomes and increased glycosylation and stability of lysosome-associated membrane proteins, which are known to be substrates for lysosomal enzymes and play a role in regulating lysosome mobility. Our findings reveal a role for Abl kinases in the regulation of late-stage autophagy and have important implications for therapies that employ pharmacological inhibitors of the Abl kinases.


Molecular Genetics and Metabolism | 2003

Identification and characterization of 13 new mutations in mucopolysaccharidosis type I patients.

Ursula Matte; Gouri Yogalingam; Doug A. Brooks; Sandra Leistner; Ida V.D. Schwartz; Luciane Lima; Denise Yvonne Janovitz Norato; Jaime Moritz Brum; Clare E. Beesley; Bryan Winchester; Roberto Giugliani; John J. Hopwood

In this study we have investigated a group of 29 Brazilian patients, who had been diagnosed with the lysosomal storage disorder, Mucopolysaccharidosis type I (MPS-I). MPS I is caused by a deficiency in the lysosomal hydrolase, alpha-L-iduronidase. Ninety percent of the MPS I patients in this study were genotyped and revealed 10 recurrent and thirteen novel IDUA gene mutations. Eight of these new mutations and three common mutations W402X, P533R, and R383H were individually expressed in CHO-K1 cells and analyzed for alpha-L-iduronidase protein and enzyme activity. A correlation was observed between the MPS I patient clinical phenotype and the associated mutant alpha-L-iduronidase protein/enzyme activity expressed in CHO-K1 cells. This was the first time that Brazilian MPS I patients had been thoroughly analyzed and highlighted the difficulties of mutation screening and clinical phenotype assessment in populations with high numbers of unique mutations.


Journal of Biological Chemistry | 1996

Feline mucopolysaccharidosis type VI. Characterization of recombinant N-acetylgalactosamine 4-sulfatase and identification of a mutation causing the disease.

Gouri Yogalingam; Tom Litjens; Julie Bielicki; Allison C. Crawley; Vivienne Muller; Donald S. Anson; John J. Hopwood

Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive disease caused by a deficiency of N-acetylgalactosamine 4-sulfatase (4S) leading to the lysosomal accumulation and urinary excretion of dermatan sulfate. MPS VI has also been described in the Siamese cat. As an initial step toward enzyme replacement therapy with recombinant feline 4S (rf4S) in MPS VI cats, the feline 4S cDNA was isolated and expressed in CHO-KI cells and rf4S was immunopurified from the culture medium. SDS-polyacrylamide gel electrophoresis analysis showed that the precursor form of immunopurified rf4S was a 66-kDa polypeptide that underwent maturation to a 43-44-kDa polypeptide. Endocytosis of rf4S by cultured feline MPS VI myoblasts was predominantly mediated by a mannose 6-phosphate receptor and resulted in the correction of dermatan sulfate storage. The mutation causing feline MPS VI was identified as a base substitution at codon 476, altering a leucine codon to a proline (L476P). The L476P allele displayed no detectable 4S activity when expressed in CHO-KI cells and was observed only as a “precursor” polypeptide that was not secreted into the medium. Identification of the mutation has allowed the development of a rapid PCR-based screening method to genotype individuals within the cat colony.


Journal of Biological Chemistry | 2010

Abl kinases are required for invadopodia formation and chemokine-induced invasion.

Pameeka Smith-Pearson; Emileigh K. Greuber; Gouri Yogalingam; Ann Marie Pendergast

The Abl tyrosine kinases, Abl and Arg, play a role in the regulation of the actin cytoskeleton by modulating cell-cell adhesion and cell motility. Deregulation of both the actin cytoskeleton and Abl kinases have been implicated in cancers. Abl kinase activity is elevated in a number of metastatic cancers and these kinases are activated downstream of several oncogenic growth factor receptor signaling pathways. However, the role of Abl kinases in regulation of the actin cytoskeleton during tumor progression and invasion remains elusive. Here we identify the Abl kinases as essential regulators of invadopodia assembly and function. We show that Abl kinases are activated downstream of the chemokine receptor, CXCR4, and are required for cancer cell invasion and matrix degradation induced by SDF1α, serum growth factors, and activated Src kinase. Moreover, Abl kinases are readily detected at invadopodia assembly sites and their inhibition prevents the assembly of actin and cortactin into organized invadopodia structures. We show that active Abl kinases form complexes with membrane type-1 matrix metalloproteinase (MT1-MMP), a critical invadopodia component required for matrix degradation. Further, loss of Abl kinase signaling induces internalization of MT1-MMP from the cell surface, promotes its accumulation in the perinuclear compartment and inhibits MT1-MMP tyrosine phosphorylation. Our findings reveal that Abl kinase signaling plays a critical role in invadopodia formation and function, and have far-reaching implications for the treatment of metastatic carcinomas.


Journal of Clinical Investigation | 1998

TWO MUTATIONS WITHIN A FELINE MUCOPOLYSACCHARIDOSIS TYPE VI COLONY CAUSE THREE DIFFERENT CLINICAL PHENOTYPES

Allison C. Crawley; Gouri Yogalingam; Vivienne Muller; John J. Hopwood

Mucopolysaccharidosis type VI (MPS VI) is a lysosomal storage disease caused by a deficiency of N-acetylgalactosamine-4-sulfatase (4S). A feline MPS VI model used to demonstrate efficacy of enzyme replacement therapy is due to the homozygous presence of an L476P mutation in 4-sulfatase. An additional mutation, D520N, inherited independently from L476P and recently identified in the same family of cats, has resulted in three clinical phenotypes. L476P homozygotes exhibit dwarfism and facial dysmorphia due to epiphyseal dysplasia, abnormally low leukocyte 4S/betahexosaminidase ratios, dermatan sulfaturia, lysosomal inclusions in most tissues including chondrocytes, corneal clouding, degenerative joint disease, and abnormal leukocyte inclusions. Similarly, D520N/D520N and L476P/D520N cats have abnormally low leukocyte 4S/betahexosaminidase ratios, mild dermatan sulfaturia, lysosomal inclusions in some chondrocytes, and abnormal leukocyte inclusions. However, both have normal growth and appearance. In addition, L476P/D520N cats have a high incidence of degenerative joint disease. We conclude that L476P/D520N cats have a very mild MPS VI phenotype not previously described in MPS VI humans. The study of L476P/D520N and D520N/ D520N genotypes will improve understanding of genotype to phenotype correlations and the pathogenesis of skeletal dysplasia and joint disease in MPS VI, and will assist in development of therapies to prevent lysosomal storage in chondrocytes.


Journal of Biological Chemistry | 1999

Expression and characterization of wild type and mutant recombinant human sulfamidase. Implications for Sanfilippo (Mucopolysaccharidosis IIIA) syndrome.

Kelly Perkins; Sharon Byers; Gouri Yogalingam; Birgit Weber; John J. Hopwood

Mucopolysaccharidosis IIIA (MPS-IIIA) is an autosomal recessive lysosomal storage disorder caused by the deficiency of sulfamidase (NS; EC 3.10.1.1), resulting in defective degradation and storage of heparan sulfate. This paper reports the production and characterization of monoclonal and polyclonal antibodies against recombinant human sulfamidase (rhNS) to quantitate and characterize normal and mutant sulfamidase produced from the wild type NS expression vector. Glycosylation and phosphorylation studies of immunoprecipitated rhNS show that all five potential glycosylation sites are utilized, with three high mannose/hybrid oligosaccharides and two simpler chains, with at least one functional mannose 6-phosphate group. An NS quantification system was developed to determine the effect of the three most common and severe patient mutations: S66W (Italy), R74C (Poland), and R245H (The Netherlands). The quantity and specific activity of expressed mutant rhNS was significantly lower than expressed normal rhNS, with 0.3, 0.2, and 0.05% of normal rhNS produced and 15, 17, and 83% of normal specific activity for S66W, R74C, and R245H observed, respectively. The recent structural elucidation of N-acetylgalactosamine-4-sulfatase was utilized to postulate the effect on the structure-function relationship of NS. The characterization of normal and mutated rhNS has relevance for efficient diagnosis and therapeutic developments for MPS-IIIA patients.


Biochimica et Biophysica Acta | 2000

Mucopolysaccharidosis type iiib: characterisation and expression of wild-type and mutant recombinant α-n-acetylglucosaminidase and relationship with sanfilippo phenotype in an attenuated patient

Gouri Yogalingam; Birgit Weber; Judith Meehan; John G. Rogers; John J. Hopwood

Mucopolysaccharidosis type IIIB (MPS-IIB) is a lysosomal storage disorder characterised by the defective degradation of heparan sulfate due to a deficiency of alpha-N-acetylglucosaminidase (NAG). The clinical severity of MPS-IIIB ranges from an attenuated to severely affected Sanfilippo phenotype. This paper describes the expression and characterisation of wild-type recombinant NAG and the molecular characterisation of a previously identified R297X/F48L compound heterozygous MPS-IIIB patient with attenuated Sanfilippo syndrome. We have previously shown R297X to be the most common mutation in a cohort of Dutch and Australian patients, occurring at a frequency of approximately 12.5%. To date F48L has only been described in the proband. To determine the contribution of each mutation to the overall clinical phenotype of the patient, both mutant alleles were engineered into the wild-type NAG cDNA and expressed in Chinese hamster ovary cells. The wild-type NAG and F48L mutant alleles were also retrovirally expressed in MPS-IIIB skin fibroblasts. Residual NAG activity and the stability and maturation of immunoprecipitated NAG were determined for wild-type NAG and mutant NAG. The combined biochemical phenotypes of the two NAG mutant alleles demonstrated a good correspondence with the observed attenuated Sanfilippo phenotype of the patient.


Journal of Biological Chemistry | 1998

Mild feline mucopolysaccharidosis type VI. Identification of an N-acetylgalactosamine-4-sulfatase mutation causing instability and increased specific activity.

Gouri Yogalingam; John J. Hopwood; Allison C. Crawley; Donald S. Anson

The missense mutation, L476P, in theN-acetylgalactosamine 4-sulfatase (4S) gene, has previously been shown to be associated with a severe feline mucopolysaccharidosis type VI (MPS VI) phenotype. The present study describes a second mutation, D520N, in the same MPS VI cat colony, which is inherited independently of L476P and is associated with a clinically mild MPS VI phenotype in D520N/L476P compound heterozygous cats. Biochemical and clinical assessment of L476P homozygous, D520N/L476P compound heterozygous, and D520N homozygous cats demonstrated that the entire range of clinical phenotypes, from severe MPS VI, to mild MPS VI, to normal are clustered within a narrow range of residual 4S activity from 0.5% to 4.6% of normal levels. When overexpressed in CHO-KI cells, the secreted form of D520N 4S was inactivated in neutral pH conditions. In addition, intracellular D520N 4S protein was rapidly degraded and corresponded to 37%, 14.5%, and 0.67% of normal 4S protein levels in the microsomal, endosomal, and lysosomal compartments, respectively. However, the specific activity of lysosomal D520N 4S was elevated 22.5-fold when compared with wild-type 4S. These results suggest that the D520N mutation causes a rapid degradation of 4S protein. The effect of this is partially ameliorated as a result of a significant elevation in the specific activity of mutant D520N 4S reaching the lysosomal compartment.


DNA and Cell Biology | 1999

Regulation of N-acetylgalactosamine 4-sulfatase expression in retrovirus-transduced feline mucopolysaccharidosis type VI muscle cells.

Gouri Yogalingam; Vivienne Muller; John J. Hopwood; Donald S. Anson

As a preliminary step toward muscle-mediated gene therapy in the mucopolysaccharidosis (MPS) type VI cat, we have analyzed the transcriptional regulation of feline N-acetylgalactosamine 4-sulfatase (f4S) gene expression from various retroviral constructs in primary cultures of muscle cells. Two retroviral constructs were made containing the f4S cDNA under the transcriptional control of the human polypeptide chain-elongation factor 1alpha (EF1alpha) gene promoter or the cytomegalovirus (CMV) immediate-early promoter. Two further retroviral constructs were made with the murine muscle creatine kinase (mck) enhancer sequence upstream of the internal promoter. Virus made from each construct was used to transduce feline MPS VI myoblasts. The mck enhancer significantly upregulated f4S gene expression from both the EF1alpha promoter and the CMV promoter in transduced myoblasts and in differentiated myofibers. The highest level of 4S activity was observed in myoblasts and myofibers transduced with the retroviral construct Lmckcmv4S, in which the f4S gene is under the transcriptional regulation of the mck enhancer and CMV immediate-early promoter. Lmckcmv4S-transduced myofibers demonstrated correction of glycosaminoglycan storage and contained a 58-fold elevated level of 4S activity compared with normal myofibers. Recombinant f4S secreted from Lmckcmv4S-transduced myofibers was endocytosed by feline MPS VI myofibers, leading to correction of the biochemical storage phenotype.


Veterinary Immunology and Immunopathology | 2003

Molecular cloning of feline CD34

Gouri Yogalingam; Donald S. Anson

In humans, baboons, dogs and mice CD34 is a cell surface molecule that is expressed on primitive hematopoietic cells and in all these species CD34 positive cells can be used to effect long-term haematopoietic reconstitution. CD34 positive haematopoietic cells therefore provide a convenient and relatively small cell population to target when attempting gene therapy via the haematopoietic system. In order to develop the mucopolysaccharidosis type VI (MPS VI) cat as a model for haematopoietic cell-mediated gene therapy we have isolated the feline CD34 gene as a first step in the generation of antibodies for purification of feline CD34 positive cells. The coding sequence for feline CD34 was isolated from brain cDNA using the polymerase chain reaction (PCR) with oligonucleotides designed to conserved regions of known CD34 gene sequences as primers. Sequence analysis of PCR products revealed the complete amino acid sequence of feline CD34 and allowed analysis of sequence conservation with CD34 from other species. Northern blot analysis showed a 2.6 kb CD34 transcript was present in feline brain, spleen, heart, testis and thymus, and to a lesser extent, in liver. A full-length cDNA clone of the feline CD34 coding sequence was assembled and expressed in CHO-K1 cells. The isolation and expression of the feline CD34 cDNA should facilitate the production of antibodies suitable for the purification of CD34 positive cells.

Collaboration


Dive into the Gouri Yogalingam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vivienne Muller

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Birgit Weber

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Doug A. Brooks

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Briony Gliddon

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

J. J. Hopwood

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Julie Bielicki

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge