Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ann Marie Pendergast is active.

Publication


Featured researches published by Ann Marie Pendergast.


Cell | 1993

BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein

Ann Marie Pendergast; Lawrence A. Quilliam; Larry D. Cripe; Craig H. Bassing; Zonghan Dai; Nanxin Li; Andreas Batzer; Kelly M. Rabun; Channing J. Der; Joseph Schlessinger; Mikhail L. Gishizky

BCR-ABL is a chimeric oncoprotein that exhibits deregulated tyrosine kinase activity and is implicated in the pathogenesis of Philadelphia chromosome (Ph1)-positive human leukemias. Sequences within the first exon of BCR are required to activate the transforming potential of BCR-ABL. The SH2/SH3 domain-containing GRB-2 protein links tyrosine kinases to Ras signaling. We demonstrate that BCR-ABL exists in a complex with GRB-2 in vivo. Binding of GRB-2 to BCR-ABL is mediated by the direct interaction of the GRB-2 SH2 domain with a phosphorylated tyrosine, Y177, within the BCR first exon. The BCR-ABL-GRB-2 interaction is required for activation of the Ras signaling pathway. Mutation of Y177 to phenylalanine (Y177F) abolishes GRB-2 binding and abrogates BCR-ABL-induced Ras activation. The BCR-ABL (Y177F) mutant is unable to transform primary bone marrow cultures and is impaired in its ability to transform Rat1 fibroblasts. These findings implicate activation of Ras function as an important component in BCR-ABL-mediated transformation and demonstrate that GRB-2 not only functions in normal development and mitogenesis but also plays a role in oncogenesis.


Molecular and Cellular Biology | 1991

BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias.

A J Muller; J C Young; Ann Marie Pendergast; M Pondel; N R Landau; Dan R. Littman; Owen N. Witte

The c-abl proto-oncogene encodes a cytoplasmic tyrosine kinase which is homologous to the src gene product in its kinase domain and in the upstream kinase regulatory domains SH2 (src homology region 2) and SH3 (src homology region 3). The murine v-abl oncogene product has lost the SH3 domain as a consequence of N-terminal fusion of gag sequences. Deletion of the SH3 domain is sufficient to render the murine c-abl proto-oncogene product transforming when myristylated N-terminal membrane localization sequences are also present. In contrast, the human BCR/ABL oncogene of the Philadelphia chromosome translocation has an intact SH3 domain and its product is not myristylated at the N terminus. To analyze the contribution of BCR-encoded sequences to BCR/ABL-mediated transformation, the effects of a series of deletions and substitutions were assessed in fibroblast and hematopoietic-cell transformation assays. BCR first-exon sequences specifically potentiate transformation and tyrosine kinase activation when they are fused to the second exon of otherwise intact c-ABL. This suggests that BCR-encoded sequences specifically interfere with negative regulation of the ABL-encoded tyrosine kinase, which would represent a novel mechanism for the activation of nonreceptor tyrosine kinase-encoding proto-oncogenes.


Cell | 1991

BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner

Ann Marie Pendergast; A J Muller; M H Havlik; Yoshiro Maru; Owen N. Witte

BCR-ABL is a chimeric oncogene implicated in the pathogenesis of Philadelphia chromosome-positive human leukemias. BCR first exon sequences specifically activate the tyrosine kinase and transforming potential of BCR-ABL. We have tested the hypothesis that activation of BCR-ABL may involve direct interaction between BCR sequences and the tyrosine kinase regulatory domains of ABL. Full-length c-BCR as well as BCR sequences retained in BCR-ABL bind specifically to the SH2 domain of ABL. The binding domain has been localized within the first exon of BCR and consists of at least two SH2-binding sites. This domain is essential for BCR-ABL-mediated transformation. Phosphoserine/phosphothreonine but not phosphotyrosine residues on BCR are required for interaction with the ABL SH2 domain. These findings extend the range of potential SH2-protein interactions in growth control pathways and suggest a function for SH2 domains in the activation of the BCR-ABL oncogene as well as a role for BCR in cellular signaling pathways.


Oncogene | 1997

The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells

David Cortez; Gary W. Reuther; Ann Marie Pendergast

Bcr-Abl is a constitutively active tyrosine kinase that is expressed in Philadelphia chromosome (Ph1)-positive human leukemias. Bcr-Abl has been shown to inhibit apoptosis and cause anchorage independent growth. However, its ability to activate mitogenic signaling pathways is controversial. Here we show that Bcr-Abl signaling prevents down-regulation of cyclin-dependent kinase activity and cell cycle arrest after growth factor deprivation of hematopoietic progenitor cells. Using an inducible system to regulate Bcr-Abl expression, we also demonstrate that Bcr-Abl expression is sufficient to induce G1-to-S phase transition, DNA synthesis, and activation of cyclin-dependent kinases in cells that were arrested in G0 by growth factor deprivation. Furthermore, Bcr-Abl activates Ras, Erk, and Jnk pathways as a primary consequence of expression. These data show that Bcr-Abl is one of a select group of oncogenes that is capable of both inhibiting apoptosis and deregulating cell proliferation. The combination of these activities is likely to be important for the progression of CML.


Nature Reviews Cancer | 2013

Role of ABL family kinases in cancer: from leukaemia to solid tumours.

Emileigh K. Greuber; Pameeka Smith-Pearson; Jun Wang; Ann Marie Pendergast

The Abelson (ABL) family of nonreceptor tyrosine kinases, ABL1 and ABL2, transduces diverse extracellular signals to protein networks that control proliferation, survival, migration and invasion. ABL1 was first identified as an oncogene required for the development of leukaemias initiated by retroviruses or chromosome translocations. The demonstration that small-molecule ABL kinase inhibitors could effectively treat chronic myeloid leukaemia opened the door to the era of targeted cancer therapies. Recent reports have uncovered roles for ABL kinases in solid tumours. Enhanced ABL expression and activation in some solid tumours, together with altered cell polarity, invasion or growth induced by activated ABL kinases, suggest that drugs targeting these kinases may be useful for treating selected solid tumours.


Current Biology | 2001

The Abl interactor proteins localize to sites of actin polymerization at the tips of lamellipodia and filopodia

Theresia E. B. Stradal; Kevin D. Courtney; Klemens Rottner; Penelope Hahne; J. Victor Small; Ann Marie Pendergast

Cell movement is mediated by the protrusion of cytoplasm in the form of sheet- and rod-like extensions, termed lamellipodia and filopodia. Protrusion is driven by actin polymerization, a process that is regulated by signaling complexes that are, as yet, poorly defined. Since actin assembly is controlled at the tips of lamellipodia and filopodia [1], these juxtamembrane sites are likely to harbor the protein complexes that control actin polymerization dynamics underlying cell motility. An understanding of the regulation of protrusion therefore requires the characterization of the molecular components recruited to these sites. The Abl interactor (Abi) proteins, targets of Abl tyrosine kinases [2-4], have been implicated in Rac-dependent cytoskeletal reorganization in response to growth factor stimulation [5]. Here, we describe the unique localization of Abi proteins in living, motile cells. We show that Abi-1 and Abi-2b fused to enhanced yellow fluorescent protein (EYFP) are recruited to the tips of lamellipodia and filopodia. We identify the targeting domain as the homologous N terminus of these two proteins. Our findings are the first to suggest a direct involvement of members of the Abi protein family in the control of actin polymerization in protrusion events, and establish the Abi proteins as potential regulators of motility.


Nature Neuroscience | 2003

Postsynaptic requirement for Abl kinases in assembly of the neuromuscular junction

Alexander J Finn; Guoping Feng; Ann Marie Pendergast

Agrin signals through the muscle-specific receptor tyrosine kinase (MuSK) to cluster acetylcholine receptors (AChRs) on the postsynaptic membrane of the neuromuscular junction (NMJ). This stands as the prevailing model of synapse induction by a presynaptic factor, yet the agrin-dependent MuSK signaling cascade is largely undefined. Abl1 (previously known as Abl) and the Abl1-related gene product Abl2 (previously known as Arg) define a family of tyrosine kinases that regulate actin structure and presynaptic axon guidance. Here we show that the Abl kinases are critical mediators of postsynaptic assembly downstream of agrin and MuSK. In mouse muscle, Abl kinases were localized to the postsynaptic membrane of the developing NMJ. In cultured myotubes, Abl kinase activity was required for agrin-induced AChR clustering and enhancement of MuSK tyrosine phosphorylation. Moreover, MuSK and Abl kinases effected reciprocal tyrosine phosphorylation and formed a complex after agrin engagement. Our findings suggest that Abl kinases provide the developing synapse with the kinase activity required for signal amplification and the intrinsic cytoskeletal regulatory capacity required for assembly and remodeling.


Nature Cell Biology | 2003

A new link between the c-Abl tyrosine kinase and phosphoinositide signalling through PLC-γ1

Rina Plattner; Brenda J. Irvin; Shuling Guo; Kevin Blackburn; Andrius Kazlauskas; Robert T. Abraham; John D. York; Ann Marie Pendergast

The c-Abl tyrosine (Tyr) kinase is activated after platelet-derived-growth factor receptor (PDGFR) stimulation in a manner that is partially dependent on Src kinase activity. However, the activity of Src kinases alone is not sufficient for activation of c-Abl by PDGFR. Here we show that functional phospholipase C-γ1 (PLC-γ1) is required for c-Abl activation by PDGFR. Decreasing cellular levels of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) by PLC-γ1-mediated hydrolysis or dephosphorylation by an inositol polyphosphate 5-phosphatase (Inp54) results in increased Abl kinase activity. c-Abl functions downstream of PLC-γ1, as expression of kinase-inactive c-Abl blocks PLC-γ1-induced chemotaxis towards PDGF-BB. PLC-γ1 and c-Abl form a complex in cells that is enhanced by PDGF stimulation. After activation, c-Abl phosphorylates PLC-γ1 and negatively modulates its function in vivo. These findings uncover a newly discovered functional interdependence between non-receptor Tyr kinase and lipid signalling pathways.


Molecular and Cellular Biology | 1993

SH1 domain autophosphorylation of P210 BCR/ABL is required for transformation but not growth factor independence.

Ann Marie Pendergast; M L Gishizky; M H Havlik; Owen N. Witte

P210 BCR/ABL is a chimeric oncogene implicated in the pathogenesis of chronic myelogenous leukemia. BCR sequences have been shown to be required for activation of the tyrosine kinase and transforming functions of BCR/ABL. In this work, we show that two other structural requirements for full transforming activity of P210 BCR/ABL include a functional tyrosine kinase and the presence of tyrosine 1294, a site of autophosphorylation within the tyrosine kinase domain. Replacement of tyrosine 1294 with phenylalanine (1294F) greatly diminishes the transforming activity of BCR/ABL without affecting the specific activity of the protein tyrosine kinase. Expression of an exogenous myc gene in fibroblasts partially complements the transforming capacity of mutant P210 BCR/ABL (1294F). Surprisingly, tyrosine 1294 is not required for efficient induction of growth factor-independence in hematopoietic cell lines by P210 BCR/ABL. These results suggest that autophosphorylation at tyrosine 1294 may be important for recognition and phosphorylation of cellular substrates in the pathway of transformation, but it is not critical for mediating the events which lead to growth factor independence.


Leukemia Research | 2002

Bcr-Abl variants: biological and clinical aspects.

Anjali S. Advani; Ann Marie Pendergast

Bcr-Abl is an oncogene that arises from fusion of the Bcr gene with the c-Abl proto-oncogene. Three different Bcr-Abl variants can be formed, depending on the amount of Bcr gene included: p185, p210, and p230. The three variants are associated with distinct types of human leukemias. Examination of the signaling pathways differentially regulated by the Bcr-Abl proteins will help us gain better insight into Bcr-Abl mediated leukemogenesis.

Collaboration


Dive into the Ann Marie Pendergast's collaboration.

Top Co-Authors

Avatar

Owen N. Witte

University of California

View shared research outputs
Top Co-Authors

Avatar

A J Muller

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M H Havlik

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge