Goutam Ghosh Choudhury
University of Texas Health Science Center at San Antonio
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Goutam Ghosh Choudhury.
Journal of Biological Chemistry | 2002
Nandini Ghosh-Choudhury; Sherry L. Abboud; Riko Nishimura; Anthony J. Celeste; Lenin Mahimainathan; Goutam Ghosh Choudhury
The mechanism by which bone morphogenetic protein-2 (BMP-2) induces osteoblast differentiation is not precisely known. We investigated the involvement of the phosphatidylinositol (PI) 3-kinase/Akt signal transduction pathway in modulation of this process. BMP-2 stimulated PI 3-kinase activity in osteogenic cells. Inhibition of PI 3-kinase activity with the specific inhibitor Ly-294002 prevented BMP-2-induced alkaline phosphatase, an early marker of osteoblast differentiation. Expression of dominant-negative PI 3-kinase also abolished osteoblastic induction of alkaline phosphatase in response to BMP-2, confirming the involvement of this lipid kinase in this process. BMP-2 stimulated Akt serine/threonine kinase activity in a PI 3-kinase-dependent manner in osteoblast precursor cells. Inhibition of Akt activity by a dominant-negative mutant of Akt blocked BMP-2-induced osteoblastic alkaline phosphatase activity. BMP-2 stimulates its own expression during osteoblast differentiation. Expression of dominant-negative PI 3-kinase or dominant-negative Akt inhibited BMP-2-induced BMP-2 transcription. Because all the known biological activities of BMP-2 are mediated by transcription via BMP-specific Smad proteins, we investigated the involvement of PI 3-kinase in Smad-dependent BMP-2 transcription. Smad5 stimulated BMP-2 transcription independent of addition of the ligand. Dominant-negative PI 3-kinase or dominant-negative Akt inhibited Smad5-dependent transcription of BMP-2. Furthermore dominant-negative Akt inhibited translocation of BMP-specific Smads into nucleus. Together these data provide the first evidence that activation of BMP receptor serine/threonine kinase stimulates the PI 3 kinase/Akt pathway and define a role for this signal transduction pathway in BMP-specific Smad function during osteoblast differentiation.
Journal of Biological Chemistry | 2011
Nirmalya Dey; Falguni Das; Meenalakshmi M. Mariappan; Chandi Charan Mandal; Nandini Ghosh-Choudhury; Balakuntalam S. Kasinath; Goutam Ghosh Choudhury
Hyperglycemia induces a wide array of signaling pathways in the kidney that lead to hypertrophy and matrix expansion, eventually culminating in progressive kidney failure. High glucose-induced reduction of the tumor suppressor protein phosphatase and tensin homolog deleted in chromosome 10 (PTEN) contributes to renal cell hypertrophy and matrix expansion. We identified microRNA-21 (miR-21) as the molecular link between high glucose and PTEN suppression. Renal cortices from OVE26 type 1 diabetic mice showed significantly elevated levels of miR-21 associated with reduced PTEN and increased fibronectin content. In renal mesangial cells, high glucose increased the expression of miR-21, which targeted the 3′-UTR of PTEN mRNA to inhibit PTEN protein expression. Overexpression of miR-21 mimicked the action of high glucose, which included a reduction in PTEN expression and a concomitant increase in Akt phosphorylation. In contrast, expression of miR-21 Sponge, to inhibit endogenous miR-21, prevented down-regulation of PTEN and phosphorylation of Akt induced by high glucose. Interestingly, high glucose-stimulated miR-21 inactivated PRAS40, a negative regulator of TORC1. Finally, miR-21 enhanced high glucose-induced TORC1 activity, resulting in renal cell hypertrophy and fibronectin expression. Thus, our results identify a previously unrecognized function of miR-21 that is the reciprocal regulation of PTEN levels and Akt/TORC1 activity that mediate critical pathologic features of diabetic kidney disease.
Biochemical Journal | 2004
Yves Gorin; Jill M. Ricono; Brent Wagner; Nam Ho Kim; Basant Bhandari; Goutam Ghosh Choudhury; Hanna E. Abboud
Angiotensin II (Ang II) stimulates hypertrophy of glomerular mesangial cells. The signalling mechanism by which Ang II exerts this effect is not precisely known. Downstream potential targets of Ang II are the extracellular-signal-regulated kinases 1 and 2 (ERK1/ERK2). We demonstrate that Ang II activates ERK1/ERK2 via the AT1 receptor. Arachidonic acid (AA) mimics the action of Ang II on ERK1/ERK2 and phospholipase A2 inhibitors blocked Ang II-induced ERK1/ERK2 activation. The antioxidant N-acetylcysteine as well as the NAD(P)H oxidase inhibitors diphenylene iodonium and phenylarsine oxide abolished both Ang II- and AA-induced ERK1/ERK2 activation. Moreover, dominant-negative Rac1 (N17Rac1) blocks activation of ERK1/ERK2 in response to Ang II and AA, whereas constitutively active Rac1 resulted in an increase in ERK1/ERK2 activity. Antisense oligonucleotides for Nox4 NAD(P)H oxidase significantly reduce activation of ERK1/ERK2 by Ang II and AA. We also show that protein synthesis in response to Ang II and AA is inhibited by N17Rac1 or MEK (mitogen-activated protein kinase/ERK kinase) inhibitor. These results demonstrate that Ang II stimulates ERK1/ERK2 by AA and Nox4-derived reactive oxygen species, suggesting that these molecules act as downstream signal transducers of Ang II in the signalling pathway linking the Ang II receptor AT1 to ERK1/ERK2 activation. This pathway involving AA, Rac1, Nox4, reactive oxygen species and ERK1/ERK2 may play an important role in Ang II-induced mesangial cell hypertrophy.
American Journal of Physiology-renal Physiology | 1997
Goutam Ghosh Choudhury; C. Karamitsos; James Hernandez; A. Gentilini; John Bardgette; Hanna E. Abboud
Proliferation and migration are important biological responses of mesangial cells to injury. Platelet-derived growth factor (PDGF) is a prime candidate to mediate these responses in glomerular disease. PDGF and its receptor (PDGFR) are upregulated in the mesangium during glomerular injury. We have recently shown that PDGF activates phosphatidylinositol 3-kinase (PI-3-kinase) in cultured mesangial cells. The role of this enzyme and other more distal signaling pathways in regulating migration and proliferation of mesangial cells has not yet been addressed. In this study, we used two inhibitors of PI-3-kinase, wortmannin (WMN) and LY-294002, to investigate the role of this enzyme in these processes. Pretreatment of mesangial cells with WMN and LY-294002 dose-dependently inhibited PDGF-induced PI-3-kinase activity assayed in antiphosphotyrosine immunoprecipitates. WMN pretreatment also inhibited the PI-3-kinase activity associated with anti-PDGFRβ immunoprecipitates prepared from mesangial cells treated with PDGF. Pretreatment of the cells with different concentrations of WMN resulted in a dose-dependent inhibition of PDGF-induced DNA synthesis. Both WMN and LY-294002 inhibited PDGF-stimulated migration of mesangial cells in a dose-dependent manner. It has recently been shown that PI-3-kinase physically interacts with Ras protein. Because Ras is an upstream regulator of the kinase cascade leading to the activation of mitogen-activated protein kinase (MAPK), we determined whether activation of PI-3-kinase is necessary for activation of MAPK. Pretreatment of mesangial cells with WMN and LY-294002 significantly inhibited PDGF-induced MAPK activity as measured by immune complex kinase assay of MAPK immunoprecipitates. Furthermore, PD-098059, an inhibitor of MAPK-activating kinase inhibited PDGF-induced MAPK activity and resulted in significant reduction of mesangial cell migration in response to PDGF. These data indicate that MAPK is a downstream target of PI-3-kinase and that both these enzymes are involved in regulating proliferation and migration of mesangial cells.
Journal of Biological Chemistry | 2007
Nandini Ghosh-Choudhury; Chandi Charan Mandal; Goutam Ghosh Choudhury
Lovastatin promotes osteoblast differentiation by increasing bone morphogenetic protein-2 (BMP-2) expression. We demonstrate that lovastatin stimulates tyrosine phosphorylation of the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3K), leading to an increase in its kinase activity in osteoblast cells. Inhibition of PI3K ameliorated expression of the osteogenic markers alkaline phosphatase, type I collagen, osteopontin, and BMP-2. Expression of dominant-negative PI3K and PTEN, an inhibitor of PI3K signaling, significantly attenuated lovastatin-induced transcription of BMP-2. Akt kinase was also activated in a PI3K-dependent manner. However, our data suggest involvement of an additional signaling pathway. Lovastatin-induced Erk1/2 activity contributed to BMP-2 transcription. Inhibition of PI3K abrogated Erk1/2 activity in response to lovastatin, indicating the presence of a signal relay between them. We provide, as a mechanism of this cross-talk, the first evidence that lovastatin stimulates rapid activation of Ras, which associates with and activates PI3K in the plasma membrane, which in turn regulates Akt and Erk1/2 to induce BMP-2 expression for osteoblast differentiation.
Diabetes | 2006
Lenin Mahimainathan; Falguni Das; Balachandar Venkatesan; Goutam Ghosh Choudhury
Diabetic nephropathy is characterized early in its course by glomerular hypertrophy and, importantly, mesangial hypertrophy, which correlate with eventual glomerulosclerosis. The mechanism of hypertrophy, however, is not known. Gene disruption of the tumor suppressor PTEN, a negative regulator of the phosphatidylinositol 3-kinase/Akt pathway, in fruit flies and mice demonstrated its role in size control in a cell-specific manner. Here, we investigated the mechanism of mesangial hypertrophy in response to high extracellular glucose. We link early renal hypertrophy with significant reduction in PTEN expression in the streptozotocin-induced diabetic kidney cortex and glomeruli, concomitant with activation of Akt. Similarly, exposure of mesangial cells to high concentrations of glucose also decreased PTEN expression and its phosphatase activity, resulting in increased Akt activity. Expression of PTEN inhibited high-glucose–induced mesangial cell hypertrophy, and expression of dominant-negative PTEN was sufficient to induce hypertrophy. In diabetic nephropathy, the hypertrophic effect of hyperglycemia is thought to be mediated by transforming growth factor-β (TGF-β). TGF-β significantly reduced PTEN expression in mesangial cells, with a reduction in its phosphatase activity and an increase in Akt activation. PTEN and dominant-negative Akt attenuated TGF-β–induced hypertrophy of mesangial cells. Finally, we show that inhibition of TGF-β signal transduction blocks the effect of high glucose on PTEN downregulation. These data identify a novel mechanism placing PTEN as a key regulator of diabetic mesangial hypertrophy involving TGF-β signaling.
Cellular Signalling | 2010
Nayana Ghosh-Choudhury; Chandi Charan Mandal; Nandini Ghosh-Choudhury; Goutam Ghosh Choudhury
Sustained activation of Akt kinase acts as a focal regulator to increase cell growth and survival, which causes tumorigenesis including breast cancer. Statins, potent inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, display anticancer activity. The molecular mechanisms by which statins block cancer cell growth are poorly understood. We demonstrate that in the tumors derived from MDA-MB-231 human breast cancer cell xenografts, simvastatin significantly inhibited phosphorylation of Akt with concomitant attenuation of the expression of the anti-apoptotic protein Bcl(XL). In many cancer cells, Bcl(XL) is a target of NFkappaB. Simvastatin inhibited the DNA binding and transcriptional activities of NFkappaB resulting in marked reduction in transcription of Bcl(XL). Signals transmitted by anti-neoplastic mechanism implanted in the cancer cells serve to obstruct the initial outgrowth of tumors. One such mechanism represents the action of the tumor suppressor protein PTEN, which negatively regulates Akt kinase activity. We provide the first evidence for significantly increased levels of PTEN in the tumors of simvastatin-administered mice. Importantly, simvastatin markedly prevented binding of NFkappaB to the two canonical recognition elements, NFRE-1 and NFRE-2 present in the PTEN promoter. Contrary to the transcriptional suppression of Bcl(XL), simvastatin significantly increased the transcription of PTEN. Furthermore, expression of NFkappaB p65 subunit inhibited transcription of PTEN, resulting in reduced protein expression, which leads to enhanced phosphorylation of Akt. Taken together, our data present a novel bifaceted mechanism where simvastatin acts on a nodal transcription factor NFkappaB, which attenuates the expression of anti-apoptotic Bcl(XL) and simultaneously derepresses the expression of anti-proliferative/proapoptotic tumor suppressor PTEN to prevent breast cancer cell growth.
Breast Cancer Research and Treatment | 2009
Triparna Ghosh-Choudhury; Chandi Charan Mandal; Kathleen Woodruff; Patricia J. St. Clair; Gabriel Fernandes; Goutam Ghosh Choudhury; Nandini Ghosh-Choudhury
The molecular mechanism for the beneficial effect of fish oil on breast tumor growth is largely undefined. Using the xenograft model in nude mice, we for the first time report that the fish oil diet significantly increased the level of PTEN protein in the breast tumors. In addition, the fish oil diet attenuated the PI 3 kinase and Akt kinase activity in the tumors leading to significant inhibition of NFκB activation. Fish oil diet also prevented the expression of anti-apoptotic proteins Bcl-2 and Bcl-XL in the breast tumors with concomitant increase in caspase 3 activity. To extend these findings we tested the functional effects of DHA and EPA, the two active ω-3 fatty acids of fish oil, on cultured MDA MB-231 cells. In agreement with our in vivo data, DHA and EPA treatment increased PTEN mRNA and protein expression and inhibited the phosphorylation of p65 subunit of NFκB in MDA MB-231 cells. Furthermore, DHA and EPA reduced expression of Bcl-2 and Bcl-XL. NFκB DNA binding activity and NFκB-dependent transcription of Bcl-2 and Bcl-XL genes were also prevented by DHA and EPA treatment. Finally, we showed that PTEN expression significantly inhibited NFκB-dependent transcription of Bcl-2 and Bcl-XL genes. Taken together, our data reveals a novel signaling pathway linking the fish oil diet to increased PTEN expression that attenuates the growth promoting signals and augments the apoptotic signals, resulting in breast tumor regression.
PLOS ONE | 2012
Nirmalya Dey; Nandini Ghosh-Choudhury; Balakuntalam S. Kasinath; Goutam Ghosh Choudhury
Transforming growth factor-β (TGFβ) promotes glomerular hypertrophy and matrix expansion, leading to glomerulosclerosis. MicroRNAs are well suited to promote fibrosis because they can repress gene expression, which negatively regulate the fibrotic process. Recent cellular and animal studies have revealed enhanced expression of microRNA, miR-21, in renal cells in response to TGFβ. Specific miR-21 targets downstream of TGFβ receptor activation that control cell hypertrophy and matrix protein expression have not been studied. Using 3′UTR-driven luciferase reporter, we identified the tumor suppressor protein PTEN as a target of TGFβ-stimulated miR-21 in glomerular mesangial cells. Expression of miR-21 Sponge, which quenches endogenous miR-21 levels, reversed TGFβ-induced suppression of PTEN. Additionally, miR-21 Sponge inhibited TGFβ-stimulated phosphorylation of Akt kinase, resulting in attenuation of phosphorylation of its substrate GSK3β. Tuberin and PRAS40, two other Akt substrates, and endogenous inhibitors of mTORC1, regulate mesangial cell hypertrophy. Neutralization of endogenous miR-21 abrogated TGFβ-stimulated phosphorylation of tuberin and PRAS40, leading to inhibition of phosphorylation of S6 kinase, mTOR and 4EBP-1. Moreover, downregulation of miR-21 significantly suppressed TGFβ-induced protein synthesis and hypertrophy, which were reversed by siRNA-targeted inhibition of PTEN expression. Similarly, expression of constitutively active Akt kinase reversed the miR-21 Sponge-mediated inhibition of TGFβ-induced protein synthesis and hypertrophy. Furthermore, expression of constitutively active mTORC1 prevented the miR-21 Sponge-induced suppression of mesangial cell protein synthesis and hypertrophy by TGFβ. Finally, we show that miR-21 Sponge inhibited TGFβ-stimulated fibronectin and collagen expression. Suppression of PTEN expression and expression of both constitutively active Akt kinase and mTORC1 independently reversed this miR-21-mediated inhibition of TGFβ-induced fibronectin and collagen expression. Our results uncover an essential role of TGFβ-induced expression of miR-21, which targets PTEN to initiate a non-canonical signaling circuit involving Akt/mTORC1 axis for mesangial cell hypertrophy and matrix protein synthesis.
Journal of Biological Chemistry | 2001
Goutam Ghosh Choudhury
Proliferation of mesangial cells requires platelet-derived growth factor receptor β (PDGFR)-mediated signal transduction. We have previously shown that activation of phosphatidylinositol (PI) 3-kinase is necessary for PDGFR-induced DNA synthesis in these cells. The mechanism by which PI 3-kinase stimulates DNA synthesis is not known. One target of PI 3-kinase, Akt serine threonine kinase, regulates survival of many cells by inhibiting the actions of certain proapoptotic proteins. In this study, we investigated the role of Akt in PDGF-induced DNA synthesis in mesangial cells. PDGF increased Akt serine threonine kinase activity in a time- and PI 3-kinase-dependent manner. Expression of dominant negative Akt by adenovirus-mediated gene transfer blocked PDGF-induced activation of endogenous Akt in mesangial cells, resulting in complete inhibition of DNA synthesis. On the other hand, inhibition of MAPK attenuated PDGF-induced DNA synthesis only partially. Inhibition of Akt also attenuated PDGF-inducedc-fos gene transcription, with concomitant inhibition of Elk-1-dependent transcription, indicating positive regulation of this early response gene by Akt. To further determine the role of Akt in PDGF-induced DNA synthesis, we investigated its effect on cyclin-dependent kinase 2 (CDK2). PDGF stimulated CDK2 activity in mesangial cells and decreased the level of p27 kip1 cyclin kinase inhibitor protein. Expression of dominant negative Akt increased p27 kip1 protein and resulted in inhibition of CDK2 activity. The increase in p27 kip1 expression in response to Akt kinase inhibition was due to increased transcription of the p27 kip1 gene. p27 kip1 transcription similarly was decreased by expression of constitutively active Akt kinase in mesangial cells. These data provide the first evidence that Akt kinase regulates PDGF-induced DNA synthesis by regulating CDK2 activity and define Akt-mediated inhibition of transcription of p27 kip1 as one of the mechanisms for PDGF-induced DNA synthesis in mesangial cells.
Collaboration
Dive into the Goutam Ghosh Choudhury's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsKavithalakshmi Sataranatarajan
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputs